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Abstract

The main origins of volatile organic compounds (VOC) in the air include human
production and activities, as well as natural processes. Monitoring and controlling VOC
can reduce emissions caused by human activities, thereby maintaining environmental
quality and safeguarding human health. Gas sensor technology, as an online detection
method, has been widely utilized for the detection and identification of VOC gases.
Simultaneously, upon identifying the types of gases, visualizing their spatial distribution
allows for the search of gas sources and facilitates understanding the information within
the gas sources. Gas sensors based on the principles of Surface enhanced Raman
scattering (SERS) offer rapid response, molecular-level detection sensitivity, specific
identification based on molecular structure, and high-resolution visualization
capabilities. Therefore, the aim of this research is to develop a SERS gas sensing
platform capable of identifying multiple VOC and visualizing the spatial distribution of
gases. This dissertation comprises five chapters outlined as follows:

In Chapter 1, the study's background was introduced. The introduction and gas
sensor technologies related to VOC were depicted. Moreover, the detection principles
and fabrication methods of SERS sensors were explained.

In Chapter 2, the SERS sensor with high intensity, combined with an adsorption
concentrating method, was utilized to detect ultra-low concentrations of geosmin in
aqueous solutions. Gas was generated from a heated geosmin aqueous solution using a
bubbling method. Upon contact with the cooler surface of the sensor, the high-
temperature gas condensed into mist, enabling the collection of geosmin SERS spectra.
With our ultra-high sensitivity detection system, a response ranges from 10 ppt to 10
ppb geosmin in ultrapure water was confirmed. Additionally, detection of 100 ppt
geosmin in tap water was achievable.

In Chapter 3, a multiple SERS gas sensor matrix via spin-coating functional
polymer was proposed to enhance gas recognition capability. Polymer films were
fabricated  using  Poly(acrylic  acid),  Poly(methyl  methacrylate), and
Polydimethylsiloxane. The high design flexibility of a double-layer film was achieved
using the layer-by-layer method with two single-layer films. SERS gas sensor coated
with different polymer films exhibited distinct affinity to target gases. The principal
component analysis algorithm was utilized to visualize the gas clusters in a two-
dimensional graph. The three target gases—phenethyl alcohol, acetophenone, and
anethole—were effectively distinguished when analyzing the characteristic variables in



the response matrix, which combined gas responses obtained from sensors coated with
three single-layer and three double-layer films.

In Chapter 4, a SERS sensor array was developed to visualize the spatial
distribution of gas evaporating from the odor source. The SERS sensor array was
positioned above the odor source and scanned by a homemade detection system to
acquire the SERS spectra matrix of the odor gas. The intensities of the characteristic
peaks from the collected spectra were utilized to generate a heatmap image. After noise
reduction processing of the heatmap image, the localization of the odor source became
distinctly identifiable in the resultant graph. Additionally, the size of the odor source
could be determined using the visualization result. Moreover, this method was
employed to visualize the spatial distribution of two distinct odor sources. To recognize
between these two odor sources, the non-negative matrix factorization algorithm was
utilized to decompose the obtained SERS spectra matrix, extracting feature and
concentration information at each spot on the sensor array. The feature information was
used to identify the odor source, while the concentration information facilitated the
generation of the heatmap image. Gaussian fitting was applied to process the image for
localizing the odor source. Consequently, the localizations of these two odor sources
were identified and visualized using a single heatmap image.

In Chapter 5, the experimental results were summarized, and the future prospects
of this dissertation were presented.
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Chapter 1
1. Introduction

1.1 Volatile Organic Compounds gas detection

1.1.1 Volatile organic compounds (VOC) gas

\olatile organic compounds (VOC) are a group of organic chemicals with a
relatively high vapor pressure at room temperature, easily evaporating and emitted as
gases from solid or liquid sources [1]. To understand the specifics of VOC gases,
classification based on their chemical functional structures is applied. Consequently,
VOC gases can mainly be categorized as alkanes, esters, alcohols, aldehydes,
halogenated compounds, and aromatic compounds [2, 3]. The VOC gases with different
functional group present distinct property. Alkenes and aromatic compounds are often
considered pollutants due to their role in the formation of photochemical ozone in the
environment [3]. Halogenated VOC are hazardous components owing to their strong
bioaccumulation potential, inherent toxicity, and stability [4].

VOC gases are produced from diverse emission sources, encompassing both
natural origin and human activities. They can contribute to environmental pollution and
in some cases, have adverse health effects on humans when present in high
concentrations indoors or outdoors. In addition, both the quantity and diversity of the
VOC gases produced as byproducts fluctuate during biological processes. For instance,
respiration in humans and animals, metabolic processes in plants, microbial activity, and
the decomposition of organic matter can all release VOC gases. Therefore, VOC gases
can be used as marker of health diagnosis, food quality, process of plant growth [5].

1.1.2 Detection of VOC gas
Detecting VOC gases is challenging and complex due to their presence in low
concentrations, and the presence of various constituent components. If VOC gases could
be successfully detected, a wealth of valuable information covering category,
concentration, and spatial distribution could be acquired.
® Category: Given the complexity of real-world applications, the target VOC gas
often coexists with other interfering gases. The target VOC gas should be
accurately distinguished from other gas components.
® Concentration: The quantity of gas molecules can be reflected by its concentration.



Typically, high concentrations of VOC gases pose harm to the environment or
human health. Therefore, effectively avoiding their negative impact can be
achieved by detecting the concentration of the target VOC gas.

® Spatial distribution: The spatial distributions of VOC gases differ in the absence
and presence of airflow. (1) In the absence of wind, gas diffusion may be more
restricted, leading to a more localized concentration distribution. Through the
spatial distribution of VOC gas in this condition, we can comprehend the
information encapsulated in the odor source, encompassing composition, size, and
temporal variations.; (2) In the presence of wind, gas diffusion occurs more
extensively. The wind carries gases, dispersing them across broader areas, resulting
in a more uniform distribution or faster dispersion. Analyzing this gas spatial
distribution using a robot equipped with recognition algorithms enables the
localization of odor sources.

1.2 Gas sensing method

1.2.1 Gas chromatography-mass spectrometry

Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical
technology for identification and quantification of multiple compounds in the gas
samples [6, 7]. First, GC separates the components of a complex gas sample by their
different volatilities as they pass through a chromatographic column. Next, MS
identifies and quantifies these separated components by analyzing their mass-to-charge
ratios and fragmentation patterns. In this stage, the separated components are ionized by
a high-energy electron beam, creating charged particles. These charged particles are
then accelerated through an electric field, determined by a mass analyzer to confirm
their mass-to-charge ratios. Consequently, the fragmentation patterns (fingerprint) of the
compounds are recorded in mass spectra, aiding in the identification and quantification
of the various components. GC-MS has gained extensive application due to its high
sensitivity in analyzing mixed gas samples across various fields, encompassing food [8]
and environmental analyses [9], as well as disease diagnosis [6]. However, this method
can’t be utilized in on-site and in vivo detection because of its high cost, bulky
equipment, and time-consuming processing. Hence, the portable and cost-effective
sensor need to be developed for VOC gas sensing.



Gas Chromatography Mass Spectrometer
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Fig. 1. 1. Schematic diagram of GC-MS for analyte detection.

1.2.2 Gas sensor technology

1.2.2.1 Semiconductor sensors

A semiconductor gas sensor is a device that utilizes semiconductor materials to
detect the concentration of a specific gas by measuring the electrical changes with the
device. These sensors rely on the interaction between gases and the semiconductor
surface (sensing material), causing changes in the physical parameters of the
semiconductor material such as conductivity, permittivity, and work function [10]. The
altered physical parameters are transduced into electronic signals, such as resistance,
capacitance, and inductance, by the VOC gas sensor. Consequently, the changed
electronic signal values enable the detection of the concentration of a target VOC gas.

Varity of semiconductor materials have been utilized in the fabrication of gas
sensor, including metal oxide, conductive polymer, carbon materials, metal
nanoparticles, and hybrid composites. The metal oxide materials have been widely used
to fabricate the metal oxide semiconductor (MOS) sensors. Based on the majority
charge carriers in the semiconductor materials, there are primarily p-type MOS sensors
(e.g., CuO) carrying holes and n-type MOS sensors (e.g., SnO2, TiO2, WO3, Zn0O, SnO2,
NiO) carrying electron. In the air, oxygen molecules adsorb onto the semiconductor
material surface, forming various oxygen species like 0%, O, and Oz ions by capturing
electrons from the conduction band [11-13]. This leads to the creation of an electron
depletion region on the surface of n-type semiconductor materials and an accumulation
of holes in p-type semiconductor materials. In n-type MOS sensors, when reducing gas
molecules react with oxygen ions, electrons return to the conduction band of the sensing



material, reducing the thickness of the electron depletion region and decreasing the
sensor's resistance. Conversely, oxidizing gases capture electrons from the oxygen
species, increasing the resistance of n-type sensing materials [14]. For p-type MOS
sensor, the material functions as an acceptor, forming a hole accumulation region.
Exposure to reducing analytes causes the hole accumulation layer to thin due to the
electron-hole recombination process, reducing the hole concentration in the p-type MOS
sensor and consequently increasing the device's overall resistance. Conversely, the
resistance is decreased when oxidizing gases are detected [15]. MOS sensors have been
developed to detect various gas analytes, such as Hz, nitrogen oxides (NOx), carbon
monoxide (CO), NHs, ethanol, H2S, and VOC. ZnO nanorods were synthesized via a
hydrothermal method to detect ethanol gas, exhibiting fast response/recovery time and
high response [16]. TiO2 nanofibers were developed through electrospinning a hybrid
solution for detection of CO gas. This MOS sensor showed a response to CO
concentrations as low as 1 ppm [17]. CuO nanowires were fabricated via a template-
assisted electrodeposition method, exhibiting good repeatability and achieving a
detection limit of 2.5 ppb for H2S gas [18]. The main advantages of MOS sensors
include high sensitivity, good reversibility, cost-effective, and fast response time.
Nevertheless, poor selectivity performance and the requirement of high operating
temperatures hinder the application of MOS sensor.
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Fig. 1. 2. Schematic diagram of MOS sensor.

1.2.2.2 Gravimetric sensors

The gas's mass can be utilized for its detection. Quartz crystal microbalance (QCM)
sensor are commonly used for as gravimetric sensor. When the mass on the crystal's
surface changes (like deposition of gases or liquids), the crystal's resonant frequency
shifts, allowing for highly sensitive detection and measurement of these mass changes.



Because QCM sensors solely measure gases based on mass, their selectivity is quite
poor. However, their selectivity can be enhanced by coating gas-sensitive materials onto
the sensor surface. A wide range of sensing materials have been used in QCM sensors,
involving polymers [19, 20], metal oxides [21-23], carbon nanotubes [24], and
molecularly imprinted polymer [25]. QCM sensor offers advantages such as fast
response time, high sensitivity, low cost, and operation at room temperature [26].
However, the detection accuracy is easily affected by the humidity, and preparation of
the gas sensing material is required.
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Fig. 1. 3. Gas detected by the QCM sensor.

1.2.2.3 Optical sensors

Most optical sensors are developed to detect gas analytes through direct and
indicator-mediated methods [1]. In direct method, the intrinsic optical signals of the gas
analytes are collected, such as non-dispersive infrared (NDIR) and Fourier transform
infrared (FTIR) sensors. In indicator-mediated sensing methods, changes in the optical
response of the indicator are utilized to monitor the presence and concentration of gas
analytes. The representative sensors fabricated using this approach are colorimetric and
fluorescent sensors.

The NDIR gas sensor analyzes the change in the intensity of the infrared spectrum
before and after the adsorption of target gas molecules to identify and quantify the gases
present in their surroundings. The NDIR gas sensor-based detection system consists of a
light source, sample cell or gas chamber, and a detector. A wide range of gas can be
detected using NDIR gas sensor, such as CO [27], carbon dioxide (CO2) [28], NOx [29],
ammonia (NHs3) [30], and hydrogen chloride (HCI) [31]. The NDIR sensor demonstrates
excellent sensitivity and selectivity, along with low power consumption and fast



response time. Nonetheless, challenges remain regarding the device's bulkiness,
overlapping gas spectra, and the detection limit for specific target gases [30].

Colorimetric sensors detect gas analytes by observing changes in the sensor's color.
This color alteration occurs due to strong chemical interactions between the gas analytes
and the sensing materials as shown in Fig.1. 4 [32, 33]. The detection result can be
easily observed with the naked eye due to the noticeable color change. For quantitative
detection, the three-channel visible range (red, green, blue) obtained with a camera can
be used to measure the concentration of the gas analyte. Colorimetric sensors provide
high sensitivity often down to parts per billion (ppb) [34] or even parts per trillion (ppt)
levels [35]. Until now, a variety of sensing materials are used to fabricate colorimetric
gas sensors according to the types of intermolecular interactions, including basic dyes,
base dyes, redox dyes, colorants with large permanent dipoles, and chromogenic
aggregative materials [36]. The main drawback of colorimetric sensors is their lack of
reversibility. Nevertheless, this sensor provides various advantages include cost-
effectiveness, portability, and high sensitivity. These attributes have led to their
application in various fields such as environmental monitoring [37], food safety [32, 38],
and healthcare [39-41].
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Fig. 1. 4. The colorimetric sensors for gas detection. The color image of the
colorimetric sensors (a) before and (b) after gas exposure, as well as the (c)
differential image.

The fluorescent sensor, created with fluorescent probes, is another typical optical
sensor utilized in gas detection [36, 42]. Its fluorescence emission spectra change upon
interacting with gas analytes. Fluorescent sensors provide a range of significant
measurement parameters like fluorescence intensity, anisotropy, lifetime, emission and
excitation spectra, fluorescence decay, and quantum vyield, which are essential for
comprehensive data analysis [43, 44]. Fluorescent sensors combined with organic
frameworks [45, 46], polymers [47], and small molecules [48] have been developed to
detect VOC gas. Fluorescent sensors boast wide-ranging applications because of their



operational simplicity, superior selectivity, and high sensitivity [42, 49]. Furthermore,
analyzing the detection results from the fluorescent sensor allows for visualizing the
analytes [42, 50]. However, fluorescent sensors have drawbacks, including the
requirement for specific probes tailored to target gases, which may also present toxicity
concerns [51].

1.2.3 Electronic-nose

An electronic nose (E-nose) is a portable device designed to mimic the human
olfactory system's ability to detect and recognize odors or gases [52, 53]. The e-nose
comprises cross-sensitive sensor arrays, akin to human olfactory bulbs, which react to
diverse chemical components present in an odor or gas mixture, producing specific
fingerprint data. Pattern recognition algorithms, similar to those in the brain olfactory
cortex, then analyze this data to identify distinct odors or assess gas mixtures [54]. The
sensor array in an e-nose comprises multiple gas sensors modified with diverse sensing
materials. The interactions between the gas analytes and sensing materials cause
changes that are then converted into electrical signals, allowing the acquisition of a
fingerprint response to the detected gases. Common types of gas sensors used in e-nose
systems include MOS, QCM, conducting polymers, and colorimetric sensors [55].
Pattern recognition algorithms are utilized to process the signals acquired from the
sensor array, allowing for the recognition and classification of different gas samples. To
date, two types of recognition algorithms have been developed [53, 54]: classical (e.g.
principal component analysis [56], linear discriminant analysis [57], decision tree [58],
support vector machine [59], and K-nearest neighbor [60]) and artificial intelligence-
based methods (e.g. multilayer perceptron [61], extreme learning machines [62], and
convolutional neural network [63]). The high-dimensional detection results, along with
pattern recognition algorithms, facilitate accurate gas sample recognition. Additionally,
the integration of gas sensors within the e-nose system contributes to rapid analysis,
cost-effectiveness, and portability. These e-nose advantages enable extensive
applications, including food quality assessment [64], environmental monitoring [65],
and breath analysis [66, 67]. The limitations of e-nose include three main aspects: lack
of long-term stability , high energy demands, and difficulties in handling variations in
Sensor response using existing recognition algorithms [54, 55, 68].

1.3 Surface enhanced Raman scattering (SERS)

Surface-enhanced Raman scattering (SERS) has been developed as an efficient
sensing technique by enhancing the Raman scatting of the molecules adsorbed onto



rough metal surfaces, such as silver or gold nanoparticles (NPs) [69-71]. When a laser
interacts with a molecule, the inelastic scattering light at different frequencies compared
to the incident laser is known as Raman scattering. Raman scatting provides vibrational
and rotational information about the molecule, which can be used to recognize the
molecule’s species. Enhancing the low-intensity Raman scattering is crucial for
practical applications. In 1974, Fleischman et.al first reported the enhanced Raman
scattering from pyridine absorbed on a roughened silver electron [72]. In 1977,
Jeanmaire and Van Duyne recognized that the increased signal could be explained by
the electromagnetic mechanism (EM) at metal surfaces [73]. In the same year, Albrecht
and Creighton proposed that enhance signal originates from the chemical mechanism
(CM), arising due to the formation of a charge-transfer complex between molecules and
metal substrate [74]. These two processes are considered as the fundamental
enhancement factors (EF) to the SERS effect [69], represented as follows:
P.= aE

where B. is the induced polarization of Raman scattering, a is the Raman polarizability
of the electrons in the molecule, and E is the applied electric fields. In Raman scattering,
the incoming light interacts with the molecule, inducing polarization as it couples with
the molecule's vibrations. This alters the molecule's dipole moment, causing the
scattered light's frequency to differ from the incident light's frequency [75].

The EM is primarily based on the enhancement through the strong local
electromagnetic field in the near field of the surface of plasmonic nanostructures, such
as silver or gold nanoparticles. When metal nanostructures are exposed to incident light
( E ), the conductive electrons undergo collective oscillations, creating an
electromagnetic field around the interface formed by the metal nanostructure and the
dielectric environment. If the frequency of the incident light (w) resonates with the
frequency of electron oscillation, it induces localized surface plasmon resonance (LSPR)
on the metal surface. LSPR results in a substantial enhancement of the local
electromagnetic field around the nanoparticles, generating intense "hot spots" due to the
coupled plasmons between two adjacent NPs [75]. On the other hand, the CM involves
interactions between the adsorbed molecules and the metal surface leading to the
formation of chemical complexation, or charge transfer and charge transfer resonance
[76, 77]. These results can enhance the polarizability of the molecule, thus increasing
the Raman intensity. The Raman intensity enhanced factors (EFs) originating from the
CM typically range from 10 to 102, which is considerably lower than the contribution
from the EM mechanism, reaching values as high as 10° to 10° [78, 79]. Consequently,
the Raman intensity of the molecule undergoes a significant enhancement when it enters



the hot spot.

SERS sensors have been emerged as a novel VOC gas sensing technique in various
applications, such as environmental monitoring [80], food quality [81], and disease
diagnose [82-84]. The SERS gas sensor possesses four main merits that drive its
applications: (i) Molecular-level high sensitivity, enabling detection of gases at
concentrations as low as ppb [85, 86]; (ii) Rapid detection, providing results as soon as
the analyte adsorbs on the surface of the SERS sensor [87]; (iii) Multiplexing capability,
achieving the recognition of multiplex gas analytes based on their Raman spectra
fingerprint [88]; and (iv) label-free detection, allowing gas analytes to be detected
without probes [89]. However, the SERS sensor for gas sensing still have some
limitations, including the poor affinity of diffuse gas molecules to the sensor surface and
the weak Raman scattering of certain gas analytes. To address these issues, modifying
the SERS sensor with nonporous materials or employing gas capture probes can offer
solutions [80, 86, 90].
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Fig. 1. 5. (a) The schematic diagram of the Raman scattering. (b) The Raman spectra
depicting the vibrational modes of the 4-aminothiophenol (4-ATP) molecule. (c) The
schematic diagram of the Raman signal enhanced by surface enhanced Raman
scattering (SERS) technology. (d) The illustration of the electromagnetic
enhancement and chemical enhancement mechanism in SERS [75, 77].

1.4 Fabrication of the SERS sensor



A SERS sensor is developed by depositing orderly arranged metallic nanopatterns
on a substrate, enabling the formation of hotspots between the nanoparticles to enhance
the Raman signals of the detected analytes. The noble metal elements gold (Au) and
silver (Ag) are commonly utilized to fabricate SERS sensors because they can induce a
strong LSPR effect [91-93]. The two primary methods for fabricating SERS-based
sensors are top-down ordered lithographic fabrication (physical fabrication method) and
the facile bottom-up self-assembly-driven approach (chemical fabrication method). The
SERS sensor is prepared using lithographic methods in a two-step process: creating a
distance-adjustment (d < 10 nm) nanopattern on the substrate and depositing metal
nanoparticles onto the patterned substrate [71]. Lithographic methods allow SERS
sensors with various structural features (geometry, size, and gaps) to be fabricated, so
the SERS substrates often have high sensitivities and give reproducible results [91, 94,
95]. However, top-down lithographic fabrication is time consuming and requires
expensive equipment [71]. The self-assembly method, utilizing chemical synthesis
techniques, is relatively inexpensive and has been primarily employed to synthesize Au
and Ag NPs. A SERS sensor can be fabricated by employing a self-assembled method to
create an aligned and packed array on a supporting substrate [96-99]. The morphologies
and interparticle gaps within uniformly self-assembled NPs can be controlled using
various synthetic methods, resulting in excellent SERS sensors [100-103]. However,
great experience in chemical synthesis is required to produce NPs. The SERS sensors
produced by these two methods have their respective merits and drawbacks, thus
requiring a trade-off selection based on the specific requirements of the application.

1.5 Motivation and objectives

To detect and identify multiple VOC with similar molecular structures, exploring
and developing an easily fabricated and high-sensitivity SERS gas sensor is essential.
Furthermore, visualizing the spatial distribution of gases based on SERS identification
results can be used to localize the odor source. Hence, this study aims to achieve three
main objectives:

(1) Develop a high-sensitivity SERS sensor with an adsorption concentrating method
for the detection of ultra-low concentration.

(2) Enhance the selectivity of the SERS gas sensor by spin-coating functional materials
onto the sensor.

(3) Visualize the spatial distribution of the VOC gas evaporating from the odor sources.



1.6 Outline of dissertation

The dissertation outline is presented as follows:

In Chapter 1, the study’s background is introduced. The significance of the VOC
gas detection and the current gas sensor technology are explained. Following this, the
novel SERS gas sensing approach, and the method of fabricating the SERS sensor are
introduced. Lastly, the motivation and objectives of this dissertation are presented.

In Chapter 2, a highly sensitive SERS sensor was developed using an adsorption
concentrating method to detect ultra-low concentration of geosmin. The geosmin
solution was heated using a water bath, generating gas through a bubbling method,
which was then adsorbed onto the sensor surface and detected.

In Chapter 3, SERS gas sensors coated with functional polymer film was fabricated
to differentiate between three types of VOC gases with similar molecular structures. The
sensor's selectivity was tailored using various functional polymer films. Ultimately, the
principal component analysis (PCA) algorithm was applied to identify these VOC gases
by analyzing their Raman intensities.

In chapter 4, a two-dimensional (2D) SERS gas sensor array was constructed to
identify and visualize the spatial distribution of gases evaporating from the odor sources.
SERS spectra of the gases at various positions across the SERS sensor array were
acquired by scanning its surface while placed above the odor source. The intensity
values of selected characteristic peaks at each point were used to generate a heatmap
image for visualizing the spatial distribution of gases. From the visualization results, the
changing status of the spatial distribution of gases over time was prominently
observable. To identify and visualize two distinct odor sources, the non-negative matrix
factorization algorithm was applied to analyze the obtained SERS spectra matrix. The
outcomes of this analysis were used to identify the gas odor sources and visualize their
spatial distributions.

In chapter 5, the experimental results are summarized, and the potential future
research avenues are proposed.



Chapter 2

2.SERS sensor for ultra-low detection with
an adsorption concentrating method

2.1 Introduction

2-methylisoborneol (MIB) and geosmin (GSM) produced by a variety of
microorganisms have been identified as being responsible for the earthy and musty taste
and odor of drinking water [104]. In healthy drinking water, the concentration of MIB
and GSM are regulated to less than 10 ppt (part per trillion). In general, the analysis of
GSM s carried out using GC-MS methods [105]. Despite the high detection limits in
GS-MS analysis, the process demands expensive equipment and is time-consuming in
the pre-treatment procedure. Therefore, the development of a faster and portable sensing
system for detecting water samples outside the laboratory setting is essential [106, 107].
SERS techniques offer a single-molecule level and direct detection approach that
enables the rapid analysis of gas chemical molecules based on their unique vibrational
fingerprints [108, 109]. Consequently, a high-sensitivity SERS gas senor was developed
to detect ultra-low concentrations of GSM in water [110].

CH,

| OH
HO

(@]LIIE

Hj
Geosmin 2-methylisoborneol

Fig. 2. 1. Chemical structure of 2-methylisoborneol and geosmin.

As described in the section 1.3, the SERS sensor possess high sensitivity when
chemical substances exist in the hot spot between two adjacent NPs [111, 112].
However, it’s challenging for small-molecule gases to be absorbed on the solid SERS
sensor due to its greater diffusion coefficient and affinity with the sensor [113, 114].
Here, a SERS sensor combined with an adsorption concentrating method has been
developed to transform liquid analytes into gaseous form, allowing adsorption and



concentration of the analytes on the surface of SERS sensor for ultra-low concentration
detection. In detail, the SERS sensor was modified with 3-Methoxybutyl 3-
Mercaptopropionate, whose thiol group could establish a coordination bond with silver.
The polar function group made the SERS sensor hydrophilic, enriching the adsorption
of GSM present in water vapor on the sensor (Fig. 2. 2). Using this method, we
transformed an aqueous GSM solution into gas, achieving the detection of a 10 ppt

GSM solution with a calculated limit of detection of 5.4 ppt.
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Fig. 2. 2. The schematic diagram of geosmin detection using a SERS gas sensor
modified with a hydrophilic chemical probe.

2.2 Materials and methods

2.2.1 Materials

RandaS SERS sensor was purchased from ATOID CO. (Japan). Hydrophilic 3-
Methoxybutyl 3-Mercaptopropionate (Tokyo Chemical Industry CO., LTD., Japan) and
hydrophobic 1-Octanethiol (Fujifilm Wako Pure Chemical Corporation, Japan) were
employed as modifiers to change the polarity of the SERS sensor. Standard GSM
(Sigma-Aldrich, America) was diluted by ultrapure water and tap water from laboratory
to different concentration (10 ppb, 1 ppb, 100 ppt, 10 ppt).

2.2.2 Formation of geosmin mist

GSM gas was generated from a GSM solution using the bubbling method, while
the solution's temperature was controlled via a water bath heating technique. GSM mist
formed when the hot GSM gas contacted the cold SERS sensor. As the mist
accumulated, a thin water film containing GSM appeared on the surface of the SERS



sensor, as shown in Fig.2. 3.
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Fig. 2. 4. (a) The schematic diagram and (b) picture of gasification detection system.

2.2.3 Gasification and detection system

As depicted in Fig. 2. 4a and b, GSM solution was added to three small bottles,
generating GSM gas through the bubbling method, and subsequently detected within the
detection set. The temperature of GSM solution was maintained using a water bath
heating method through a hot plate. The gas flow rate was set at 100 ml/min using the
mass flow controller (MFC) (KOFLOC Kyoto, Japan). Within the detection set, a
commercially available RandaS SERS sensor with Ag nanostructure was utilized. A
metallic chamber was designed to prevent laser leakage and the absorption of external
light. Additionally, it hindered gas absorption on its inner wall. A computer-controlled
automatic mobile stage was devised for convenient adjustment of the laser focus and



irradiation position. SERS measurements were conducted using a Raman spectrometer
(AvaRaman, Avantes, Japan) with a 532 nm laser. The laser exposure time was set to 5
seconds, and the average number of calculations was 12 times.

2.2.4 Modification of SERS substrate

To start, the SERS sensor underwent a series of washes with acetone, water, and
ethanol. Subsequently, the substrate was immersed in a 3-Methoxybutyl 3-
Mercaptopropionate ethanol solution to fabricate the hydrophilic sensor and a 1-
Octanethiol ethanol solution to fabricate the hydrophobic sensor for 20 minutes. Finally,
the sensor was dried using a nitrogen flow.

2.3 Results and discussions

2.3.1 SERS spectrum for determining geosmin gas

At first, a 10 pL droplet of GSM standard solution was deposited onto the SERS
sensor using a pipette and allowed to dry in the ambient environment. Subsequently, the
SERS spectrum of GSM was recorded. Following this, gas generated by the gasification
system was introduced from a 100-ppm concentration GSM solution to the surface of
the bare SERS sensor located in the chamber. By comparing the two spectra, as
illustrated in Fig. 2. 5, the characteristic peaks of GSM at 672 cm™, 805 cm™, and 1006
cm* were determined.

Standard
30001 100 ppm

672 cm’

805cm™ [ 1006 cm™

Raman intensity (a.u.)

T T T T T T
300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Raman shift (cm™)

Fig. 2. 5. Comparation of standard and 100 ppm geosmin solution.

2.3.2 Temperature determination of water bath heating
Heating the liquid analyte makes it easier to generate gas. Additionally, increasing
the temperature difference between the gas and the sensor allows mist to form more



rapidly on the sensor surface. The heating temperature was regulated using water bath
heating, and three small bottles containing the GSM solution were connected in series to
enhance gas production (Fig. 2. 4b.).

In this study, the gas generation time is a crucial factor influencing GSM detection.
Our focus was on observing variations in sensitivity over time, particularly while
heating a 10 ppb GSM solution at 80°C. The SERS spectra of GSM were acquired at
different time intervals on the same spots, as depicted in the Fig. 2. 6a. The SERS
intensities of the characteristic peaks at 672 cm™ were utilized as quantitative analysis
standards for GSM. The SERS intensity was calculated as the difference between the
peak and valley value of the characteristic peak. In Fig. 2. 6b, the SERS intensity
increased before 10 minutes and subsequently decreased between 1 and 34 minutes.
During the aeration process, gas gradually accumulated on the sensor, forming a thin
water film due to the warm GSM gas adhered to the cooler sensor. This resulted in
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Fig. 2. 6. (a) The SRES spectra and (b) change of SERS intensity at 672cm™ with
time when 10 ppb geosmin was detected at 80 °C.



an initial increase in SERS intensity. However, as an excessive amount of gas attached
to the sensor, the thin water film transformed into water droplets. Our hypothesis
suggested that these water droplets might hinder the entry of GSM molecules into the
hotspots, consequently leading to a decline in SERS sensitivity.

Subsequently, we explored the correlation between heating temperature and the
SERS sensor’s detection sensitivity. At temperatures ranging from 40 °C to 80 °C, we
detect the same concentration (10 ppb) of GSM solution, and the intensities of the three
distinctive peaks were calculated as indicated in Fig. 2.7. The greatest SERS intensity at
the same temperature was 805 cm™, while the intensity at 672 cm™ was the second
highest. Furthermore, the SERS intensity exhibited an upward trend with increasing
heating temperature. While SERS intensity continued to rise beyond 80 °C, such high
temperatures might be dangerous and consume excessive energy in practical
applications. Consequently, for the subsequent experiments, we chose 40 °C or 50 °C as
the heating condition. Additionally, the distinctive peak at 805 cm™ might be interfered
by the SERS sensor's fixed Raman shift (820 cm™). Thus, the Raman shift at 672 cm™
was taken into consideration as the characteristic peak of GSM. Upon closer inspection,
at a heating temperature of 50°C, compared to 40°C, the average intensity values
showed a slight increase and the standard deviation slightly decreased. Furthermore,
50°C was found to be more favorable for the volatilization of GSM from water. Hence,
we ultimately selected a heating temperature of 50°C for subsequent experiments.
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Fig. 2. 7. The average intensity of three characteristic Raman peaks varied at
different temperatures.



2.3.3 Influence of hydrophilic and hydrophobic sensors on GSM detection

As discussed earlier, carrier gas transported GSM and water molecules from the
sample solution, leading to the formation of a water mist on the sensor. To improve the
sensor's ability to detect lower concentrations, the hydrophobic SERS sensor was
modified to become hydrophilic. This modification involved the use of 3-Methoxybutyl
3-Mercaptopropionate to impart hydrophilicity to the substrate, while 1-Octanethiol was
chosen to maintain its hydrophobic nature. Thiol groups, which form strong
coordination bonds with silver, allowed these two selected thiol compounds to attach to
the sensor through an immersion method. The -COO functional group of 3-
Methoxybutyl 3-Mercaptopropionate was hydrophilic, while the -CH3 functional group
of 1-Octanethiol was hydrophobic. Consequently, the hydrophilic sensor was expected
to attract more GSM molecules that coexisted with water molecules.
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Fig. 2. 8. (a) SERS spectra of geosmin tested by hydrophilic and hydrophobic
substrate and (b) Detection range of SERS substrate modified by 3-Methoxybutyl 3-
Mercaptopropionate (3MTB).

In the subsequent experiment, we determined the optimal concentration of the



modified sulfide solution. As shown in Fig. 2. 8a, when 1-Octanethiol was used as the
modifier, no Raman peak of GSM was observed. This difficulty for the hydrophobic
sensor to adsorb water molecules containing GSM led to the absence of the SERS signal.
Moreover, the characteristic peak at 672 cm™ was detected only at a modifier
concentration of 1 uM. This observation could be explained by the formation of a thick
film on the substrate when a high-concentration solution was used, thereby hindering
GSM from reaching the hotspots of the SERS sensor.

Gas sensitivity was assessed using the hydrophilic substrate in Fig. 2.8b. The
detection limit was determined to be 10 ppt, with a detection range spanning from 0.01
ppb to 10 ppb. Notably, the logarithm of GSM concentration displayed a strong linear
relationship with the SERS intensity, showcasing a high correlation coefficient of 0.945.
In the collected SERS spectra under conditions without GSM detection, data within the
Raman shifts between 549 cm™ and 959 cm™ were selected. The average and standard
deviation were calculated for this selected range. The noise intensity value was
determined by adding three times the standard deviation to the average value. This value
was then used as the limit of detection. Furthermore, the limit of detection (38) for GSM
in ultrapure water was calculated to be 5.4 ppt.

2.3.4 Detection of geosmin in tap water

To validate the practicality of our proposed detection system, we employed
laboratory tap water to directly dilute the standard GSM solution into various
concentrations. Employing the previously described detection method, we acquired the
SERS spectra of GSM gas at various concentrations, and the detection results were
presented in Fig. 2.9a.

The lowest detectable limit for GSM in this experiment was determined to be 100
ppt. When compared to GSM diluted in ultrapure water at the same concentration, the
SERS intensity at 672 cm™ was lower. This difference could be attributed to the
presence of other particles in untreated tap water, which might have affected the
adsorption of GSM molecules on the sensor. Despite this, GSM could still be
distinguished based on its unique SERS spectra. However, for chemicals with similar
SERS peaks, additional filtration might be necessary.
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Fig. 2. 9. Comparation of (a) SERS spectra and (b) SERS intensity at 672 cm™ of
various geosmin solutions diluted in tap water and ultrapure water.

2.4 Conclusions

In this chapter, a high-sensitivity SERS gas sensor modified with chemical probes,
combined with an adsorption concentrating method, was developed to concentrate and
adsorb GSM onto the sensor surface, thereby achieving ultra-low concentration
detection of GSM. To convert the GSM solution into gas, a gasification and detection
system was constructed. The water bath heating method was utilized to facilitate gas
generation easily. Under a 50 °C heating condition, a concentration as low as 10 ppt of
GSM became detectable by the hydrophilic SERS sensor. Moreover, a strong linear
relationship between concentration and SERS intensity was established. Additionally,
this detection system successfully identified a concentration of 100 ppt of GSM in tap
water.



Chapter 3

3.Gas recognition using multiple polymer
film

3.1 Introduction

In a SERS spectrum, rich fingerprint information regarding the unique vibration
frequencies of molecule is provided. Consequently, processing the specific SERS
spectrum proves suitable for effectively accomplishing the classification and
recognition of VOC gas samples. However, there is a challenge to recognize gas
samples with similar molecular structures, whose characteristic peaks may overlap in
SERS spectra. The primary aim of this chapter was to enhance the selectivity of SERS
gas sensor in this detection situation. The easily-prepared polymer materials are
commonly utilized in gas sensor devices because of their chemical and physical
properties [115, 116].

In this chapter, the gas affinities of the SERS sensor array were changed by spin-
coating distinct functional polymer films for recognizing different VOC gases with
similar structures (Fig 3.1). The fabricated polymer film was employed to impede the
contact of low-affinity gases with the SERS sensor, while permitting high-affinity gases
to pass through the polymer film and reach the sensor surface. Three plant-based
essential oil molecules, namely phenethyl alcohol, acetophenone, and anethole, were
chosen as target gases due to their similar structure. Three distinct polymers,
Poly(acrylic  acid)  (PAA), Poly(methyl methacrylate) (PMMA), and
Polydimethylsiloxane (PDMS), each possessing different molecular structures and
functional groups, were employed as sensing films. On a SERS sensor, single-layer or
double-layer film was prepared using the spin-coated method. The double-layer film,
characterized by high design flexibility, was fabricated using the layer-by-layer method.
Upon detecting the three gases with sensors coated with different polymer films, diverse
gas responses were observed. A response matrix, constructed using SERS intensities of
the target gases, underwent processing through PCA algorithm. The characteristic
variables of response matrix were adjusted by utilizing SERS intensity data collected
from different sensors, aiming to optimize the performance of gas recognition.
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Fig. 3. 1. The schematic diagram of a SERS gas sensor coated with the polymer film
array for gas recognition.

3.2 Materials and methods

3.2.1 Materials and instrumentation

Phenethyl alcohol was acquired from Kanto Chemical CO., INC. (Tokyo, Japan),
while anethole was obtained from Nacalai TESQUE, INC. (Tokyoto, Japan).
Acetophenone, ethanol, PAA, PMMA, hexane, and chloroform were purchased from
Wako Pure Chemical Industries CO., Ltd. (Osaka, Japan). PDMS was acquired from
Shin-Etsu Chemical CO., INC. (Tokyo, Japan). All reagents were used as received. The
supplier of the RandaS SERS sensor was ATOID CO. (Japan). Polymer film coated on
SERS sensor was analyzed using Fourier transform infrared spectroscopy (FT/IR-6800,
Jasco, Japan). To image sensor morphologies, scanning electron microscopy (SEM,
SU8000, Hitachi, Japan) was employed. Using a 532 nm excitation laser as the light
source (power = 1.5 mW), a Raman spectrometer (AvaRaman, Avantes, Japan) was used
to collect the Raman spectra. The accumulation time was set to 10 seconds for data
collection.

3.2.2 Fabrication of polymer-coater SERS sensor

First, we prepared three polymer (PAA, PMMA, PDMS) solutions. PAA (30 mg)
was dissolved in 16 mL of ethanol, PMMA (30 mg) was dissolved in 16 mL of
chloroform, and PDMS (2 mg) was dissolved in 16 mL of hexane. The polymer
solutions were thoroughly stirred prior to utilization.

Next, the SERS sensor was spin-coated with these prepared polymer solutions. The
SERS sensor was cleaned by sequential immersion in acetone, ethanol, and ultrapure
water, followed by drying with a nitrogen stream. The bare SERS sensor without spin-



coated polymer film served as a reference. For the fabrication of single-layer polymer
film-coated SERS sensor, 15 uL of polymer solution was spin-coated onto the SERS
sensor and then dried under vacuum conditions. The spin-coating process involved
spinning at 500 rpm for 20 s, a slope of 500 rpm to 3000 rpm for 10 s, and then 3000
rpm for 30 s. In case of double-layer polymer film-coated SERS sensors, the layer-by-
layer method was employed. The first polymer film was prepared on the cleaned SERS
sensor, and after drying, the second polymer film was spin-coated onto the surface.

3.2.3 Gas generation and detection system

The gas generation and detection system schematic are illustrated in Fig. 3. 2. An
air pump produced carrier gas with a flow rate of 0.1 mL/min, regulated by an MFC. A
gas cleaning filter, containing molecular sieve and zeolite, was placed between the MFC
and a glass bottle containing the odorant (3 mL) to control humidity. The target gas was
generated using the bubbling method and subsequently detected in a custom-made gas
detector cell. The gas concentrations were calculated by [117]:

(1)

where F is the flow rate of the dilute air (0.1 L/min), Dr is the diffusion rate
(mg/min), and k is the factor used to convert gas weight to volume, calculated by:

k x Dy x 103
F

C =

22.4 X (273 + ) X 760 @)
M X273 xP

k =

where t is the temperature in the gas detector cell (20 °C), M is the molecular
weight, and P is the gas pressure (760 mmHg). The target gas concentrations for
phenethyl alcohol, acetophenone, and anethole were determined to be 403.4, 510.2, and
623.7 ppm, respectively.

Raman spectrometer

>
=

Raman spectrum

ﬁ N = : |
< —— — . o Raman shift
— H Y0

Odorant

Intens

Fig. 3. 2. Schematics of gas generation and detection system.

An adjustable stage was manufactured to fine-tune the position and size of laser
focused on the SERS gas sensor. The detection chamber was utilized to prevent laser
leakage. SERS spectra of the three target gases were recorded following exposure of the



SERS gas sensor to each gas for a specific duration. Additionally, the gas detection cell
underwent a 20-minute air flow wash after each gas detection.

3.3 Results and discussions

3.3.1 SERS spectra of the detected gases

The morphologies of the sensors were depicted in Fig. S3.1, where the size of Ag
NPs was approximately 50 nm (Fig. S3.1a). Ag nanoparticles were observed to gather
and form clusters, creating more hotspots. Because they all have a benzene ring in their
chemical structure, phenethyl alcohol, acetophenone, and anethole were chosen as the
target gases. A bare SERS sensor was used to get the SERS spectra of three target gases
(Fig. 3. 3). For phenethyl alcohol and acetophenone, the characteristic peaks at 1007
cm™ and 1604 cm™ were attributed to ring breathing vibrational and ring stretching
mode [118] (Fig. 3. 3a, b), respectively. In Fig. 3. 3c, benzene ring stretching vibration
at 1604 cm, C-O-C stretching vibration at 1175 cm™ of anethole gas were clearly
observed [119]. Although the main characteristic peaks of the target samples in gaseous
and liquid states were similar (Fig. S3.2), the SERS intensities of the gases were weaker,
possibly due to the challenge of gas adsorption on the surface of the bare SERS sensor.
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Fig. 3. 3. SERS spectra of (a) Phenethyl alcohol gas, (b) acetophenone gas and (c)
anethole gas.



A distinct characteristic peak at 1175 cm™ was identified, which could be used to
differentiate anethole gas from acetophenone and phenethyl alcohol gases. However,
two prominent peaks at 1007 cm™ and 1604 cm™ were observed in the SERS spectra of
acetophenone and phenethyl alcohol gases. Consequently, distinguishing between these
two target gases solely based on the peak positions was challenging.

3.3.2 FT-IR spectra of functional polymer film

Discriminating between acetophenone and phenethyl alcohol gases directly using
SERS spectra collected by the bare SERS sensor becomes difficult due to the similarity
of their distinctive peaks. However, it is commonly known that polymers exhibit distinct
properties such as polarity, size, and molecular structure. Drawing inspiration from this,
polymers were employed in the fabrication of gas sensors [115]. Herein, we proposed a
method to alter the affinity of SERS gas sensor by constructing a polymer film on the
sensor through the spin-coating method, aiming to differentiate gases with similar
molecular structures.

As functional polymer films for gas sensors, three distinct types of polymers—,
PAA [120], PMMA [121], and PDMS [122]—with varying molecular structures and
polarity were used. In our designed SERS gas sensors, we leveraged these polymers.
Moreover, we explored two types of functional polymer films: single-layer and double-
layer polymer films. Specifically, the double-layer film was composed of two single-
layer films fabricated using the layer-by-layer method. This approach enabled the
realization of a functional double-layer polymer film with high design flexibility,
achieved by selecting two different single-layer films based on the specific detection
requirements. For a double-layer polymer film sensor, when polymer B was spin-coated
onto polymer A, the sensor was referred to as an A-B SERS gas sensor. For example, a
PDMS-PAA SERS gas sensor was created by spin-coating a PAA polymer film onto a
PDMS film. The thickness of the prepared film layer in this work was less than 10 nm,
following similar spin-coating conditions from our previous study [123]. In Fig. 3.4, FT-
IR spectra were acquired using the reflection absorption spectroscopy method in the
range of 800-3600 cm, recorded for both single-layer and double-layer polymer films.
Bending vibrations of PAA [124], PMMA [125], PDMS [126] polymers were confirmed
with relative reference. In this experiment, we initially fabricated the first polymer film
on the bare SERS sensor and then collect the FT-IR spectrum. Subsequently, the second
polymer film was spin-coated on this sensor, and the FT-IR spectrum was recorded once
again. The polymer films were attached to the SERS sensor based on the characteristic
spectra. Additionally, we observed that only the bending vibration of the top polymer
film appeared when a double-layer film SERS sensor was detected. This observation



indicated that the first polymer film layer was nearly completely covered by the top
polymer film layer.
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Fig. 3. 4. FT-IR spectra in the range 800-3600 cm™ of SERS gas sensor coated by (a)
PDMS-PAA, (b) PMMA-PAA and (c) PDMS-PMMA polymer film.

3.3.3 Sensitivity of polymer film coated SERS gas sensor

The background SERS spectra of the bare sensor and sensor coated with PAA,
PMMA, and PDMS were presented in Fig. S3.3. No characteristic peaks at 1007 cm™,
1175 cm™ or 1604 cm™ were observed in the background SERS spectra. All SERS
spectra in our result were obtained after subtracting the baseline of the SERS sensor.
Phenethyl alcohol, acetophenone, anethole gases were individually detected by polymer
film-coated SERS gas sensors. The target gas was exposed to the sensor before SERS
spectra were collected. It is well-known that different regions on a SERS sensor exhibit
hotspots with varying signal enhancements [127]. Therefore, ensuring point-to-point
reproducibility across a SERS sensor is crucial for accurately assessing the sensor's
sensitivity. In this study, SERS spectra from 30 randomly selected points on polymer
film-coated SERS gas sensors were obtained. Additionally, the SERS intensities of
phenethyl alcohol gas at 1007 cm™, detected by PAA-coated, PMMA-coated, and
PDMS-coated sensors, were calculated and plotted in Fig 3.5. PMMA-coated and
PDMS-coated sensor exhibited the lowest and highest sensitivity for phenethyl alcohol
gas, respectively. The SERS spectra of phenethyl alcohol gases obtained from polymer



film-coated sensors were shown in Fig. S3. 4. Furthermore, the SERS intensity results
for acetophenone gas at 1007 cm™ and anethole gas at 1175 cm™ detected by three
polymer film coated SERS gas sensor, were recorded in Fig. S3.5 and S3.7, respectively.
The SERS spectra of acetophenone and anethole gases detected using three polymer-
coated sensors were shown in Fig. S3.6 and S3.8, respectively. The variations in
affinities arising from the physicochemical properties of polymers for the target gas led
to differences in the amount of gas absorbed on the sensor surface, resulting in diverse
intensities in the SERS signal for the target gas. Moreover, small variations in the points
of SERS intensities were observed on a single sensor. The variation in SERS intensity
on the SERS gas sensor could be attributed to two main factors: (1) the density and size
of Ag nanoparticles sputtered on the SERS sensor exhibited a certain level of uniformity,
affecting the homogeneity of intensities and quantities of hotspots, and (2) due to the
fluidity of the gas, the attachment point of gas on the sensor was indefinite, leading to
variations in the quantity of gas at different detection points. Consequently, the analysis
utilized data from 30 points to enhance accuracy.
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PDMS-PAA-coated SERS gas sensor for phenethyl alcohol gas detection.

Another aspect considered in evaluating SERS sensors is their batch-to-batch
producibility [128]. Since single-layer polymer film sensors exhibited distinct gas
responses, we extended our investigation to the gas response of double-layer polymer
film sensors. Specifically, we detected phenethyl alcohol gas using PAA-coated and
PDMS-PAA-coated SERS gas sensors. To ensure consistent relative positions, the x-y
stage in the detection system was adjusted for all three sensors, maintaining the same
positions for 30 detected points relative to the gas inlet. Due to the increased thickness
of the double-layer polymer film, gas molecules took longer to adhere to the SERS gas
sensor surface. The average values and error bands for the same relative position points
(three points) on the three sensors were calculated, as depicted in Fig. 3. 6. While there
was variation in the SERS intensities among the 30 points, the relatively narrow error
bands at the same position suggested acceptable batch-to-batch producibility of the
SERS gas sensor. Additionally, the SERS intensity of phenethyl alcohol gas detected by
the PDMS-PAA-coated sensor was higher than that of the PAA-coated sensor. This
difference could be attributed to the better affinity of PDMS polymer to phenethyl
alcohol gas compared to the PAA-coated sensor (Fig. 3.5). Therefore, the double-layer
PDMS-PAA polymer film structure enhanced the sensor’s affinity to phenethyl alcohol
gas. This confirmed that a novel response property could be achieved by designing a
double-layer polymer film with two single-layer polymer films. Three types of double-
layer polymer films, PDMS-PAA, PMMA-PAA and PDMS-PMMA, were selected to
fabricate SERS gas sensors for detecting phenethyl alcohol, acetophenone, and anethole
gases.



3.3.4 Gas recognition using polymer film coated SERS gas sensor array

3.3.4.1 Target gas recognition by bare and single-layer polymer film coated sensor
The SERS intensity results of a previously described characteristic peak (Fig. 3.5,
S3.5, and S3.7) revealed that the polymers employed in this study exhibited varying
affinities to the three target gases. Instead of focusing solely on the intensity value at a
single characteristic peak, the SERS intensities at 1007 cm™, 1175 cm™ and 1605 cm™
were employed as responses for discriminating among the three target gases. A total of
90 samples (comprising three target gases with 30 points each in one detection) were
considered, with intensity values at the three selected peaks treated as characteristic
variables, as depicted in Fig. S3. 9. Consequently, a response matrix My, IS generated
for gas recognition analysis. PCA, an unsupervised machine learning method, was then
applied for the dimensionality reduction of the high-dimensional data [129, 130].
Principal components (PCs) were extracted through linear combinations of the original
variables. Subsequently, the cluster trends of the target gases were visualized in a two-
dimensional space using uncorrelated scores from two PC. In this study, the response
matrix was pre-processed through auto-scaling to mitigate the large variation observed
in different Raman intensity data. We conducted PCA analysis using R software
(version 4.1.0). The two primary PC scores (PC1 and PC2) were employed to create
two-dimensional graphs. Subsequently, a confidence ellipse with a confidence level of
95% for each cluster was added onto the two-dimensional plot. Increased distances
between the confidence ellipses of distinct clusters indicated greater differences,
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Fig. 3. 7. PCA score plots of phenethyl alcohol, acetophenone and anethole gases
detected by bare SERS sensor.



facilitating their distinguishability. Additionally, the size of the confidence ellipse
signified the dispersion of the samples; larger ellipses indicated more dispersed samples.

Initially, we utilized the response matrix derived from the unmodified SERS sensor
for gas recognition. The PCA score plots of samples detected by the unmodified sensor
were presented in Fig. 3.7. In this plot, the clusters of phenethyl alcohol and
acetophenone exhibited an overlap, while the cluster of anethole was distinctly
recognizable. This observation could be attributed to the similarity in the SERS spectra
of phenethyl alcohol and acetophenone, sharing common characteristic peaks at 1007
cm? and 1605 cm™. In contrast, anethole possessed a unique peak at 1175 cm™,
allowing for its discrimination from phenethyl alcohol and acetophenone gases.
Furthermore, the horizontal alignment of these three clusters suggested that SERS
intensity at 1175 cm™ plays a crucial role in PC1.
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Fig. 3. 8. PCA score plots by (a) PAA-coated, (b) PMMA-coated or (c) PDMS-
coated SERS gas sensor used for phenethyl alcohol, acetophenone and anethole
gases detection.



Subsequently, we employed a single-layer polymer film SERS gas sensor to
recognize three target gases. The distribution of 90 collected samples from the single-
layer polymer film sensor was depicted in PC1-PC2 space in Fig. 3. 8. Generally, the
clusters of the three gases exhibited distinct distribution patterns. Specifically, clusters
of the 90 samples detected by the PAA-coated sensor overlapped with each other, while
clusters in the PC1-PC2 space of the PMMA-coated and PDMS-coated sensors were
distributed both horizontally and vertically. Phenethyl alcohol and acetophenone
clusters overlapped in Fig. 3. 8a, b and c, a phenethyl alcohol sample was incorrectly
classified into the acetophenone cluster in Fig. 3. 8c, attributed to their similar SERS
spectra. On PMMA and PDMS sensors, there were less overlaps between the
acetophenone and phenethyl alcohol clusters compared to the results from the
unmodified sensor. The distribution patterns in the PC1-PC2 space of the three polymer-
coated sensors confirmed that these polymers elicited different gas responses for
phenethyl alcohol, acetophenone, and anethole. It was noteworthy, however, that the
three target gases did not occupy entirely separate regions.

3.3.4.2 Target gas recognition of two single-layer and one double-layer polymer
film coated SERS gas sensor

As a single-layer polymer-coated SERS gas sensor proved insufficient for the
recognition of the three target gases, gas responses from two different polymers were
employed for the recognition process. The responses from the two polymers could be
acquired through two different approaches: SERS intensities recorded from (1)
combinations of two single-layer polymer-film coated sensors or (2) one double-layer
polymer-film coated sensor. If the gas responses of polymer A and B were defined as R4
and Ry, respectively, the gas response of the double-layer polymer A-B could be
represented as either R, + Ry (a combination of responses from A and B) or R; (a
new characteristic gas response). Herein, the PCA method was employed to determine
which method exhibited superior recognition ability for the three target gases. A
response matrix My Was formed by combining the data from two single-layer
polymer film-coated sensors, incorporating 90 samples (comprising three target gases
with 30 points each) and six characteristic variables (representing three SERS
intensities for each of the two polymer films). Additionally, a response matrix Mg 3
was created for the double-layer polymer film-coated sensor, comprising 90 samples
and three characteristic variables (representing three SERS intensities detected by one
sensor). The PCA score plots for the combination of PAA-coated and PDMS-coated
SERS gas sensors and PDMS-PAA coated sensor were illustrated in Fig. 3. 9. In Fig. 3.
9a, the anethole cluster was distinctly separated, and there was a relatively small overlap



between the phenethyl alcohol and acetophenone clusters. However, an acetophenone
sample appeared within the phenethyl alcohol cluster, indicating incomplete
discrimination between phenethyl alcohol and acetophenone clusters by the PAA-coated
and PDMS-coated sensor combination. The PDMS-PAA coated sensor exhibited a less
effective recognition performance, as depicted in Fig. 3. 9b. The recognition
performance of the PMMA-coated and PAA-coated sensor combination surpassed that
of the PMMA-PAA coated sensor, as evident in the PCA score plots in Fig. S3. 10.
Surprisingly, the response combinations of PDMS-coated and PMMA-coated sensors
(Fig. S3.11) resulted in well-differentiated clusters for the three gases. However, it was
noteworthy that the distance between the anethole cluster and the phenethyl alcohol
cluster was relatively close. Increasing the number of characteristic variables in the
response matrix might further enhanced the separation distance among the three gas
clusters. In conclusion, a double-layer polymer film-coated sensor exhibited a distinct
response characteristic in comparison to a single-layer polymer film-coated sensor.
Importantly, the combination of responses from two single-layer polymer film-coated
sensors demonstrated superior gas recognition performance when compared to one
double-layer polymer film-coated sensor.
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Fig. 3. 9. Comparation of PCA score plots of the (a) PDMS-coated and PAA-coated
SERS gas sensors combination and (b) one PDMS-PAA coated SERS gas sensor
used for phenethyl alcohol, acetophenone and anethole gases detection.

3.3.4.3 Gas recognition ability improvement by increasing characteristic variables
in response matrix

The gas responses acquired from multiple polymer film-coated SERS gas sensors

were utilized in constructing a response matrix for gas recognition. Consequently, three

response matrices were formed: Mqy,xo (representing three single-layer film-coated



Sensors), Mgoxo (representing three double-layer film-coated sensors), and Mggyxqg
(representing the combination of three single-layer and three double-layer film-coated
sensors). Specifically, Mqyxo and Mg, Were both constructed with 90 samples and
nine characteristic variables (SERS intensities at three characteristic peaks multiplied by
three polymers film). The characteristic variables of My, ;g Were set at 18, comprising
SERS intensities at three characteristic peaks multiplied by the total number of polymer
films (three single-layers + three double-layer). PCA score plots in PC1-PC2 space for
these three response matrices were shown in Fig. 3. 10. By increasing the number of
characteristic variables from six to nine, as shown in Fig. 3. 10a, the three gas clusters
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were completely separated, and the distance between clusters was further compared to
the results in Fig. S3. 11. Notably, the response matrix Mgy, had the same number of
characteristic variables as Mqy, €nabling easy recognition of the three gas clusters. In
contrast, the PCA score plot in Fig. 3.10b revealed the proximity of the anethole cluster
to the acetophenone cluster. This observation could be attributed to the double-layer
polymer film-coated sensor presenting a novel response property for the three target
gases. Consequently, the amount of information provided remained consistent with that
of the single-layer polymer film-coated sensor. Notably, in Fig. 3.10c, the three gas
clusters exhibited a widely dispersed distribution. Therefore, increasing the number of
characteristic variables in the response matrix, processed by the PCA method,
effectively enhances the gas recognition capability, as indicated by our results.

3.4 Conclusion

In this chapter, multiple polymer film coated SERS gas sensors were developed to
distinguish gases with similar structures. Three target gases, namely phenethyl alcohol,
acetophenone, and anethole, each comprising a benzene ring and distinctive functional
groups, were chosen for the study. Single-layer polymer films on SERS gas sensors
were fabricated using PAA, PMMA, and PDMS through the spin-coating method.
Additionally, a double-layer polymer film was created by flexibly combining two
single-layer films using the layer-by-layer method. The SERS spectra of the three target
gases were collected as they were detected by polymer-coated sensors with varying gas
affinities. Characteristic variables in the response matrix for PCA analysis were SERS
intensities at selected characteristic peaks of the target gases. Furthermore, the choice of
characteristic variables could be altered by employing SERS intensities detected by
different polymer-coated sensors. As inferred from the PCA results, gas molecules with
similar structures were accurately discriminated, showcasing that the double-layer film-
coated sensor exhibited a novel response property compared to a single-layer film-
coated sensor. The most effective gas recognition outcome was observed when the
response matrix was constructed with 18 characteristic variables according to the PCA
score plot. Additionally, the gas recognition performance was enhanced by increasing
the number of characteristic variables in the response matrix. This outcome
substantiates that the recognition of gases with similar molecular structures can be
achieved using SERS sensors spin-coated with multiple polymers possessing different
affinities.



Chapter 4

4.Visualization of the spatial distribution of
gas from odor sources

4.1 Introduction

On the basis of recognizing VOC gases, visualizing the spatial distribution of gases
can extend the range of applications. Analyzing the spatial distribution of the VOC gas
provides crucial insights into the odor source. By examining how airflow influences the
spatial distribution of the detected gas, a robot equipped with recognition algorithms can
accurately pinpoint the location of the odor source [131-133]. Furthermore, studying the
spatial distribution of gas evaporating from the odor source allows us to elucidate
essential information encompassed in the odor source, such as its composition,
localization, and temporal variations [134-136].

The gas spatial distribution can be visualized using the gas concentration
information obtained from sensors. A large-scale sensor array was previously
constructed using the metal MOS sensors and used to visualize gas distributions [137].
This sensing system was portable and cost-effective; however, it collected a limited
amount of data, which led to relatively low-resolution images. A fluorometric sensor has
been developed for the visualized detection of the gas. The intensity of the fluorescent
light changed with the concentration of the detected gas after the sensor was excited
with ultraviolet (UV) light, the fluorescent signal was collected using a camera [134,
138]. As a result, the spatial distribution of the gas was visualized using a high-
resolution color image. This sensor required suitable fluorescent dyes for the target gas
and consideration of the lighting interference in the environment. Moreover, a gas
sensor based on LSPR combined with a cooled charge-coupled device camera was used
to visualize gas distributions. The LSPR sensor was easily fabricated by depositing
metallic nanoparticles (NPs) on the substrate, which was used without further
modification and exhibited a rapid response. Specific gas molecules interacting with the
NPs shift the LSPR frequency and intensity, enabling gas detection and quantification.
These changes were used for gas visualization [139]; however, the selectivity of the
LSPR sensor has yet to be resolved. Notably, SERS sensors offer solutions to various
challenges encountered in other gas sensing technologies. SERS sensor offers three key



advantages in visualizing spatial distribution of gas: (1) accurate identification of
analytes through vibrational spectroscopy [69, 140], (2) label-free molecular detection,
streamlining the detection process [70], and (3) high-resolution imaging by capturing
SERS spectra at various positions on the sensor surface [141, 142].

In this chapter, we introduced a two-dimensional (2D) SERS sensor array designed
to visualize the spatial distribution of gas evaporating from odor sources positioned at
various positions. Specifically, the 2D sensor array, comprising nine identical small-
sized SERS sensors, was constructed in a 3 x 3 grids. The benzaldehyde odor source
was heated to release the gas, and the custom-designed sensor array was positioned
above the odor source. Subsequently, the odor-adsorbed sensor array underwent
scanning to collect SERS spectra from different locations. From the gathered SERS
spectra, the intensities of specific Raman characteristic peaks corresponding to the
detected odor were extracted. This intensity information was then utilized to generate a
heatmap image, offering a visual representation of the spatial distribution of the odor.
Ultimately, by analyzing features of the gas spatial distribution, the localization of the
odor source can be determined.
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Fig. 4.1. The schematic illustration of visualizing the odor source using a two-
dimensional SERS qas sensor array.

4.2 Materials and Methods

4.2.1 Fabrication of SERS sensor
The fabrication process of the SERS sensor involves three steps: synthesizing Ag



seeds solution, using Ag seeds to synthesize larger Ag NP solution, and transferring
these larger Ag NPs onto a glass substrate. All steps were conducted in the laboratory.

First, the Ag seed solution was synthesized according to a previous report [143].
One mL of an aqueous solution containing sodium citrate (1 wt%), 0.25 mL of an
aqueous solution of silver nitrate (AgNO3) (1 wt%), and 0.2 mL of an aqueous solution
of sodium chloride (NaCl) (20 mM) were introduced into 1.05 mL of water while
stirring. Following a 5-minute interval, the citrate-silver-NaCl solution was combined
with 47.5 mL of boiling water, with the addition of 80 uL of an aqueous solution of L-
ascorbic acid (AA) into the boiling water one minute before introducing the citrate-
silver-NaCl solution. After heating for one hour, the resulting solution yielded the Ag
NP seed solution.

Second, Ag NPs with a size of approximately 90 nm were synthesized using the
prepared Ag seeds solution. Initially, 2 mL of an aqueous solution containing silver
nitrate (AgNO3) (1 wt%) was combined with 800 uL of ammonia water (25%—28%).
Subsequently, 550 uL of the original solution of Ag NP seeds was introduced into water
(18.92 mL) with stirring in a 50 mL glass bottle. Following that, an aqueous silver-
ammonia complex solution (280 uL, 43 mM) and an aqueous solution of L-ascorbic
acid (AA) (8 mL, 2.5 mM) were added to the same glass bottle. After stirring for one
hour, the Ag NPs were concentrated through centrifugation, redispersed in 5 mL of an
aqueous solution. Finally, 100 uL of an aqueous solution of tetrabutylammonium nitrate
(C16H36N203) was added.

Lastly, a densely packed Ag NP monolayer film was deposited onto a glass
substrate using the oil/water/oil three-phase system based on the Marangoni effect [100,
144]. In this process, 2.5 mL of the concentrated aqueous Ag NP solution was mixed
with 2 mL of chloroform in a 15 mL centrifuge tube. Following a 30-second hand
shaking of the tube, 0.6 uL of hexane was introduced. The formation of the densely
packed NP monolayer film took place at the interface between hexane and water in this
solution. Finally, the monolayer film was transferred onto the glass substrate to serve as
the SERS sensor. This transfer was accomplished by inserting a glass substrate under
the monolayer film at an angle and then pulling it out, resulting in the film being
transferred onto the glass substrate measuring 5 mm x 5 mm. The entire fabrication
process was illustrated in Fig. S4.1. A 2D sensor array was created by arranging nine
SERS sensors in a 3 x 3 configuration. In this sensor array, neighboring sensors were
closely positioned, and their distance was deemed negligible (0 mm). Consequently, the
overall dimensions of our SERS sensor array were 15 mm x 15 mm.



4.2.2 Reproducibility of the fabricated sensor

Immersing nine SERS sensors in an 8 mL ethanol solution containing a 4-
aminothiophenol (4-ATP) at a concentration of 1 uM for one hour, followed by cleaning
with an ethanol solution and drying under a nitrogen flow. The reproducibility of the
fabricated SERS sensor was evaluated by calculating the SERS intensities of the
selected characteristic peak.

4.2.3 Detection of the gas evaporating from odor source

For generating odor sources, BZD solution was individually added to an aluminum
cup with a 5 mm diameter and depth. Gas generation occurred under two conditions:
without heating and with the odor source heated using a Peltier device for one minute to
accelerate gas evaporation. Five positions were selected for placing the odor source:
center, left-bottom, left-up_left-bottom, right-up_left-bottom and center_left-bottom, as
depicted in Fig. S4.2. The SERS sensor array was positioned above the stationary odor
source fixed in an enclosed space (Fig. 4. 2a). The detection process was illustrated in
Fig. S4.3. Following gas adsorption onto the sensor surface, the sensor array was moved
from the odor source and fixed in the detection chamber. The gas’s SERS spectra were
then collected using a portable Raman spectrometer (Fig. 4. 2b). During the detection
process, a total of 1296 spectra were acquired from one sensor array in a scanning
format of 36 points x 36 points using a program-controlled detection system. The step
distance between the two points was set at 0.4 mm, resulting a calculated detection area
of 14.0 mm x 14.0 mm. Each SERS spectrum was collected with a duration of 1 second.

The detection of odor sources with varying sizes followed the same procedure. The
size of the odor source was changed by positioning an aluminum plate with a circular
hole above it and adjusting the hole's diameter. In addition, as Fig. S4. 4 illustrates, the
centers of the hole and the source of the odor were oriented along the same vertical line.
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Fig. 4. 2. (a) The gas evaporated from benzaldehyde odor source adsorbed to the
SERS sensor array. (b) The photography of home-made gas detection system.

4.2.4 Distribution pattern of the odor source

Utilizing a single SERS sensor array, we simultaneously observed the spatial
distribution of gases evaporating from two BZD odor sources. By filling identical cups
with the same volume of BZD solution, two odor sources were generated. To position
the two odor sources, three distribution patterns were established. Moreover, the
proposed approach was applied to simultaneously identify and locate the sources of
BZD and 4-ethylbenzaldehyde (EBZD) odors.

4.3 Results and discussions

4.3.1 Performance of fabricated SERS sensor

Using an oil/water/oil three-phase technique, the Ag NPs monolayer film was
transferred to the glass substrate to fabricate SERS sensors. The process of seed-
mediated development was utilized to synthesize the Ag NPs with large sizes. As
illustrated in Fig. 4.3, ultraviolet-visible (UV-vis) spectra were acquired in order to
comprehend the optical characteristics of the Ag NP seeds and Ag NPs. For Ag seeds, a
distinct dipole peak was observed at around 400 nm. At approximately 500 nm, a new
quadrupole peak emerged for the Ag NPs. Moreover, the dipole peak position was red-
shifted to a longer wavelength [143]. The morphological features of the Ag NPs on the
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Fig. 4. 3. The UV-vis spectra of the synthesized Ag nanoparticle (NP) seeds and Ag
NPs with large size.
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Fig. 4. 4. (a, b) Scanning electron microscope (SEM) image of the Ag NPs on the
SERS sensor. (c) Size distribution of the Ag NPs obtained by ImageJ software.

SERS sensor are shown in Fig. 4.4a and b, demonstrating that the monolayer film with a



dense and large-scale arrangement was transferred to the glass substrate. Fig. 4.4a and b
illustrated the morphological features of the Ag NPs on the SERS sensor, showcasing
the successful transfer of the monolayer film with a dense and large-scale arrangement
onto the glass substrate. The synthetically generated Ag NPs exhibited nearly uniform
sizes. The scanning electron microscope (SEM) image was processed using ImageJ
software (version 1.53) to analyze the size distribution of the Ag NPs on the sensor, as
depicted in Fig. 4.4c. The average diameter of the Ag NPs was calculated to be 90.90 +
12.56 nm.

The sensor was immersed in a 4-ATP solution and the SERS spectrum of 4-ATP
was recorded in order to evaluate the homogeneity and reproducibility of the fabricated
SERS sensor, as depicted in Fig. 4. 5a. The bond vibration information of the prominent
characteristic peaks was summarized in Table S4.1 [145]. Over a 2 mm X 2 mm area,
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Fig. 4. 5. (a) SERS spectra of the 4-aminothiophenol (4-ATP) modified on the
fabricated SERS sensor. (b) The histogram of the SERS intensities at 1082 cm™ in
their corresponding SERS spectra of 4-ATP collected from 100 positions on the
sensor. (c) Average values of SERS intensities at 1082 cm™ of 4-ATP obtained from
nine SERS sensors.

we obtained 100 SERS spectra at a step distance of 200 um. The spot-to-spot variation



distributions of the SERS intensities for the 1082 cm™ peak were illustrated in Fig. 4. 5b.
For the SERS intensity, the relative standard deviation (RSD) was 5.45%. As a result,
the fabricated SERS sensor possessed high uniformity over a large area [69, 146, 147].
Additionally, the reproducibility of the SERS sensor was assessed using nine batches of
sensors modified with 4-ATP. Fig. 4.5c provided an overview of the average SERS
intensities at 1082 cm™ from 100 spectra for each of the nine batches of fabricated
sensors. The great batch reproducibility of the SERS sensor was confirmed with an RSD
value of 8.45% across the nine sensors.

4.3.2 BZD odor source detected without heating

4.3.2.1 Benzaldehyde odor detection versus time

The SERS sensor array was exposed to the odor source for the first five minutes of
the odor detection process, after which it was scanned. The same array was then
exposed for a further 15 minutes prior to the execution of the second scan. Ultimately, a
third scan was performed following a further 15-minute exposure. Throughout all three
scanning procedures, the beginning point and scanning mode of the array remained
constant. We obtained SERS spectra from a specific location near the odor source at
different time points, and the results were shown in Fig. 4. 6. For BZD gas, two distinct
characteristic peaks were observed at 1006 and 1603 cm™ [148]. The intensity of the
peak at 1006 cm™ exhibited an increase over time, suggesting a greater quantity of BZD
molecules adhering to the surface of the SERS sensor.
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Fig. 4. 6. The SERS spectra of benzaldehyde odor at different time points (0 min, 5
min, 20 min, 35 min) were collected at the same point.



4.3.2.2 Noise reduction of the heatmap graph

During this detection process, the 2D sensor array underwent scanning in a 35
spots x 35 spots format, resulting in the acquisition of 1225 SERS spectra. To generate
a heatmap illustrating the spatial distribution of the gas evaporating from the BZD odor
source, we utilized the peak intensity values at 1006 cm™ obtained from 1225 locations
(35 x 35) on a single sensor array. The heatmap produced by utilizing the raw peak
intensity data from a SERS sensor array exposed to the odor source in the left-bottom
corner for 35 minutes was shown in Figure 4. 7a. The peak intensity values were
significantly higher in the vicinity of the odor source compared to other areas. Moreover,
as the position moved away from the odor source, the peak intensity decreased. The
SERS spectra of the odor gas were not visible on the far-right side of the SERS sensor
array.

Denoising was applied to the heatmap image to enhance the clarity of the spatial
distribution of gases visualization results. Images can be denoised using a variety of
techniques, such as Gaussian filtering [149], median filtering [150], and Wiener filtering
[151]. The gas evaporating from the odor source in our enclosed gas detection setting
might be roughly described as a Gaussian distribution. Consequently, Gaussian noise
was likely the predominant feature in the generated heatmap image, making Gaussian
filtering a suitable choice for addressing the noise in our heatmap images. The denoising
effect in Gaussian filtering depended on the size of the Gaussian kernel. In this case,
where we need to denoise a limited area while preserving fine-grained details of the
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Fig. 4. 7. (a) The heatmap graph generated by 1225 peak intensity values from the

SERS sensor exposed to the odor source for 35 min and (b) processed heatmap
created by denoising the raw heatmap through Gaussian filter.



gas spatial distribution, a small Gaussian kernel was applied. The denoising process was
implemented using Python (version 3.8). Specifically, a 3 x 3 Gaussian kernel with a
standard deviation of one was employed for processing the heatmap, resulting in the
graph shown in Fig. 4. 7b. Denoising enhanced the clarity of the heatmap, highlighting
the location of the odor source. Consequently, the denoising procedure for the
subsequent heatmap graphics also utilized the Gaussian filter.

4.3.2.3 Visualization of the spatial distribution of gas versus time

The visualization results of SERS sensors exposed to the odor source for different
durations were compared to examine the diffusion dynamics of the odor gas over time.
Utilizing the same SERS sensor array, the odor source in the left-bottom corner was
observed at 5, 20, and 35 minutes (Fig. 4.8). By analyzing the three heatmap images, it
was evident that the odor was barely perceptible before a five-minute exposure. This
suggested that only a few benzaldehyde odor molecules were deposited onto the sensor
during this brief period. Conversely, as the exposure duration increased, the odor gas
surrounding the odor source became more easily detectable. After 20 minutes of
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Fig. 4. 8. The visualization of benzaldehyde odor at 5 min, 20 min and 35 min when
the odor source was placed at the left-bottom corner.



exposure, the sensor array exhibited a smaller area of odor gas adsorption compared to
the 30-minute exposure, and the peak intensity at the same location on the sensor array
increased. These experimental findings suggested that the odor spread over time from
the left-bottom corner to the surrounding region.

Additionally, as depicted in Fig. 4.9, we conducted two distinct odor source
localizations (left-up and left-bottom) to further validate our results. Remarkably, in
contrast to the single odor source, we observed a similar odor gas diffusion tendency
over time. However, due to the presence of two odor sources, odor gas was detected on
the left side of the sensor array during a 20-minute exposure period. The odor gas
diffused from the odor source in the left-up and the left-bottom corner to the
surrounding simultaneously, therefore, the odor gas could be detected on the left side of
the sensor array, which was consistent with our expected results. The detection of odor
gas on the left side of the sensor array aligned with our expected results. The
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Fig. 4. 9. The visualization of benzaldehyde odor at 5 min, 20 min and 35 min when
the odor source was placed at the left-bottom and left-up corner.



odor gas diffused from the odor sources in the left-up and left-bottom corners
simultaneously. Additionally, we observed that the peak intensity on the left side was
higher than that on the right side, possibly due to the proximity of these regions to the
odor source. Consequently, we inferred that as the exposure period increased, the odor
gas spread from the left side of the SERS array to the right side.

4.3.3 BZD odor source detected under heating

4.3.3.1 Visualization of the single odor source placed at different positions

Following one minute of heating the odor source, the SERS spectrum of BZD gas
became more easily detectable. In a single detection, the 2D sensor array was scanned to
collect 1296 (36 x 36) SERS spectra. The SERS intensity of the peak at 1006 cm™ was
then calculated to create a heatmap image, illustrating the spatial distribution of the gas
evaporating from the odor source.

To simulate the odor source scenario, a framework with five apertures was
designed, providing five potential positions for a BZD odor source: Left-Up (LU), Left-
Bottom (LB), Center (C), Right-Up (RU), and Right-Bottom (RB). Fig. 4.10 illustrated
two visualization results of the odor source positioned in the corner (LB) and center (C)
positions. The SERS intensities collected from the sensor array's LB corner were
significantly higher than those from other locations when the odor source was placed
there. Similarly, higher SERS intensities were observed at the central locations when the
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Fig. 4. 10. The heatmap image of visualizing benzaldehyde odor source positioned in
the left bottom (LB) and center (C) of the framework.

odor source was placed there. Additionally, as depicted in Fig. S4.5, the distribution of



these SERS intensity values was plotted in a three-dimensional graph. The shape of this
distribution bore resemblance to a two-dimensional Gaussian distribution.

4.3.3.2 Visualization of the two odor sources placed at different distribution
pattern

To position the two odor sources, three distribution patterns (LB_LU, LB_RU, and
LB _C) were established. The heatmap images of the three distribution patterns were
easily distinguishable, as illustrated in Fig. 4.11. The spatial distributions of gas from a
single odor source were nearly identical when two odor sources were positioned in the
LB LU and LB_RU patterns. Furthermore, due to the sufficient distance between the
two odor sources, their mutual diffusion had little effect, making it easy to discern the
locations of the two sources. Two gas distributions appeared merged in the LB _C
pattern visualization result, creating the appearance of a unified entity. According to the
results, the visualization results of the two differently positioned odor sources were
essentially a superposition of the separate visualization results based on the positions of
the odor sources.
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Fig. 4. 11. The visualization and localization result of two benzaldehyde odor
sources when the distribution patterns were (a) Left-Bottom_Left-Up (LB_LU), (b)
Left-Bottom_Right-Up (LB_RU), and (c) Left-Bottom_Center (LB_C), respectively.
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4.3.3.3 Visualization of the odor source with different size

The aluminum plate was prepared with holes measuring 2, 3, and 5 mm in diameter,
respectively. The single odor source was positioned at the center of the designed
framework. As depicted in Fig. 4.12, despite the aluminum plate covering the odor
source, the benzaldehyde gas remained detectable. Three distinct visualizations of odor
sources with different sizes were obtained. When comparing the results of BZD_C 2mm



and BZD_C 3mm, there was only a 1 mm fluctuation in the hole diameter, indicating
minimal variation in the prominent region's area within the heatmap image. However,
because the hole's diameter matched that of the cup, the visualization result for BZD_C
5 mm was comparable to that of BZD_C. Consequently, we inferred that the aluminum
plate had no discernible effect on the diffusion of the gas. Furthermore, even with a
small 2 mm diameter, spatial distribution of gas from the odor sources of varying sizes
could be visualized.
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Fig. 4. 12. The visualization and localization result of benzaldehyde odor sources
with different size: (a) 2, (b) 3, and (c) 5 mm, respectively.

4.3.4 Visualize the spatial distributions of gases from different odor sources
Because it was necessary to observe more than one odor source simultaneously,
identifying distinct odor sources based only on one unigque peak in the SERS spectrum
may not be possible. Therefore, the utilization of the non-negative matrix factorization
(NMF) algorithm became crucial in processing the SERS spectral matrix information
acquired from sensor arrays. This spectral matrix encompassed spectra from various
individual gases as well as spectra of gas mixtures resulting from their combinations.
The NMF algorithm was utilized to extract feature and concentration information of the
adsorbed gas at each point on the sensor array. The feature information, which mirrors
the gas's SERS spectrum, facilitated the identification of the gas species. A
convolutional neural network model was utilized for identifying the feature information.
Additionally, the concentration information of the target gas at each point facilitated the
generation of a heatmap image, providing visualization of its spatial distribution. The
heatmap image underwent processing using a Gaussian fitting model to localize the
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Fig. 4. 13. A flowchart of data processing to identify gases from the collected SRES
spectra matrix and visualize the spatial distribution of the specific gas.

odor source. The process of visualizing different odor sources using NMF model was
illustrated in Fig 4.13. The illustrations of NMF and Gaussian fitting model were
presented in Appendix B.

The proposed method was employed to visualize the spatial distributions of gases
evaporating from 4-ethylbenzaldehyde (EBZD) and BZD odor source [152]. We
positioned the BZD and EBZD odor sources at the center and the left-bottom locations.
As illustrated in Fig. 4.14, the NMF decomposition of the SERS spectra matrix resulted
in four feature components. Components rl and r2 were identified as originating from
BZD and EBZD gases, respectively. Components r3 and r4 represented interference
(noise and baseline).
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Fig. 4. 14. Non-negative Matrix Factorization (NMF) components were obtained
when benzaldehyde (BZD) and 4-ethylbenzaldehyde (EBZD) were detected using
one Sensor array.

A CNN model was employed to identify these components. To construct our CNN
model, we utilized PyTorch (version 2.1) and Python (version 3.8). The training datasets
were constructed from the feature data of the component when one and two of the same
odor sources were detected. The training dataset was split into training and validation



sets using a 7:3 ratio. A rectified linear units (ReLU) layer was applied after the input
data was fed into a one-dimensional convolutional layer. Two consecutive fully
connected layers were attached to the ReLU layer. Finally, the SoftMax layer was
utilized to classify the output. At the beginning of the training process, the learning rate
was 0.0001 and the adaptive moment estimation optimizer was selected. During the
training phase, a cosine annealing learning rate scheduling strategy was employed with
a period of 10 epochs and a minimum learning rate of 0.00001. The CNN model, after
being trained, was applied to identify the components in the NMF decomposition result
during the detection of two distinct odor sources.
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Fig. 4. 15. (a) The loss value of the training and valid dataset when the convolutional
neural network (CNN) model was trained. (b) The confusion matrix result for the
CNN model used for identifying the NMF components.

The labels 0, 1, and 2 were assigned to the interference, BZD, and EBZD spectra,
respectively. As the training progressed, the accuracy consistently increased, while the
loss gradually decreased, indicating an improvement in the model's ability to match the
data over time (Fig. 4. 15a). The confusion matrix result, with a recognition accuracy of
98.21%, confirmed the effective identification of the trained CNN recognition model, as
shown in Fig. 4. 15b. Consequently, the model accurately recognized the feature
components in the NMF decomposition data.

In the final stage, the concentration information of the relevant gases was
employed to visualize the locations of the odor sources. As an example, we utilized the
experiment where EBZD was positioned in the left-bottom and BZD in the left-up to
demonstrate how to simultaneously visualize the spatial distribution of both gases.
Initially, the concentration data for BZD and EBZD were utilized to generate their
respective visualization results. The final visualization, which concurrently illustrated



the spatial distribution of both gases, was generated by overlaying these two
visualization results at corresponding points. Therefore, it was possible to identify and
localize two distinct odor sources, as depicted in Figure 4.16. The spatial distribution of
the BZD gas was indicated by the blue point in the visualization result, while the EBZD
gas was represented by the yellow spot. Due to the substantial separation between the
two odor sources, the gases were distributed in two distinct spatial patterns.
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Fig. 4. 16. Overlaying the independent spatial distribution patterns of the two gases
enabled the simultaneous visualization of the spatial distribution of both odor
sources.

Additionally, as shown in Fig. 4.17a, the spatial distribution of gases evaporating
from the BZD in the center and the EBZD in the left-bottom corner was simultaneously
visualized. Overlap between the two spatial distributions was observed due to the
relatively close physical proximity of the two odor sources. In Fig. 4.17b, it was
observed that the spatial distribution of these two gases did not influence each other
when BZD was placed in the right-up corner. This can be attributed to the significantly
greater separation between the odor sources.
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Fig. 4. 17. The visualization result of both BZD and EBZD odor sources detected by
one SERS sensor array was obtained. The EBZD odor source was positioned at left-
bottom corner. The BZD odor source was positioned at (a) center and (b) right-up
corner.

4.4 Conclusion

In conclusion, a 2D SERS gas sensor array was constructed to identify and
visualize the gas spatial distribution of BZD and EBZD odor sources. The sensor was
fabricated through self-assembly based on the Marangoni effect, ensuring high
reproducibility. Positioned above the odor source for gas adsorption, the sensor array
was able to capture the gases evaporating from the heated source more effectively
compared to the unheated gas. Subsequently, the surface of the sensor array was
scanned to obtain SERS spectra of the gases. The SERS intensity values of selected
characteristic peaks in the gas spectrum varied at different locations on the sensor.
Consequently, a heatmap image was generated using the SERS intensity values of BZD
gas, illustrating the spatial distribution of the gas. The results of the gas spatial
distribution visualization allowed for an observation of the gas diffusion dynamics over
time. These visualization results contributed to a better understanding of the progression
of odor gas diffusion from the source to the surrounding environment. Moreover, our
proposed method proved effective in visualizing and localizing single BZD odor
sources of various sizes.

Distinguishing between different types of gases became challenging when relying
solely on several unique distinctive peaks. However, it was possible to differentiate
various gases by utilizing SERS spectra that contain molecular structure information. A
detection result matrix was constructed using the SERS spectra data collected from the



sensor array and decomposed using the NMF model. The output of the NMF model
included concentration and feature information for the detected gas. Plotting the
concentration information in a heatmap image facilitated the visualization of the gas's
spatial distribution. The image was processed using a Gaussian model to localize the
odor source at different positions. To distinguish various components of the feature
information, a CNN recognition model was constructed. Consequently, a single sensor
array was able to simultaneously identify and visualize the spatial distributions of gases
evaporating from BZD and EBZD odor sources placed at distinct positions.



Chapter 5

5.Conclusions and prospects

5.1 Conclusions

5.1.1 Detection and Recognition of the VOC gases using SERS sensor

The distinct characteristic peaks in the SERS spectra are attributed to the specific
functional groups of the VOC gas molecules. By comparing these different Raman peak
patterns, machine learning-based methods can accurately recognize the VOC gases.
Thus, SERS gas sensing technology emerges as a promising method for detecting and
identifying VOC gases, owing to its rapid response time, high sensitivity, and
exceptional selectivity.

To obtain SERS spectra, a SERS sensor is indispensable as a key device. Two
types of the SERS sensor, namely commercial and chemically synthesized nanoparticle-
based sensor, were developed to detect VOC gases. The commercial SERS sensor,
combined with an adsorption concentrating method, was developed to detect ultra-low
concentrations of geosmin. Additionally, the commercial SERS sensors coated with
multiple polymer film were fabricated to differentiate VOC gases with similar
molecular structures. The chemically synthesized nanoparticle-based SERS sensor was
utilized to visualize the spatial distribution of gas from the odor source. The
commercially available SERS sensor was highly sensitive and user-friendly but tended
to be more expensive. SERS sensors crafted with chemically synthesized nanoparticles
exhibited higher sensitivity and cost-effective but involved a relatively complex
fabrication process and presented numerous background peaks. Therefore, it is
necessary to weigh the detection conditions in order to select the appropriate sensor.

The machine learning models were employed to recognize various VOC gas
samples. When detecting gases using SERS sensors coated with polymer films, a PCA
model can analyze the intensity of characteristic peaks of the measured gases at specific
Raman shifts to differentiate between gas categories. The CNN model was constructed
to recognize the feature information of BZD and EBZD odor sources, achieving an
accuracy of 98.21%. Therefore, the integration of SERS gas sensors with machine
learning models can be developed for recognizing VOC gases.



5.1.2 Visualization of the VOC gases using SERS sensor array

In addition to VOC gas identification, we also visually represent the spatial
distribution of gases derived from the recognition results. A SERS sensor array was
developed to visualize the spatial distribution of VOC gases evaporating from the odor
source in conditions without airflow.

The SERS spectra matrix was acquired by scanning the surface of the SERS sensor
array positioned above the odor source. SERS intensity values of characteristic peaks at
1006 cm™ were employed to create a heatmap image, enabling visualization of the gas's
spatial distribution. The diffusion of gas on the sensor array was distinctly observable
over time. Moreover, a sensor array simultaneously visualized two distinct locations of
BZD gas sources. The size of individual BZD gas sources could be determined from
these visualized results.

Furthermore, gases evaporating from BZD and EBZD odor sources were detected
and visualized using a single SERS sensor array. The NMF algorithm was applied to
decompose the acquired SERS spectra matrix, extracting feature and concentration
information of the detected VOC gas. The feature information was processed using a
CNN model for distinguishing between these two odors. Meanwhile, the concentration
information was utilized to generate the heatmap image. This image underwent
processing via a 2D Gaussian fitting model, enabling precise localization of these two
odor sources. Beyond individually visualizing the spatial distribution of the odor
sources, the processed heatmap image revealed the interaction zone between these two
sources. This showcased the potential of the SERS sensor array as an easily
implementable method for visualizing the spatial distribution of VOC gases.

5.2 Prospects

5.2.1 Identification of VOC mixture gases using SERS sensor

Pure gases (Chapter 3) were accurately identified based on the distinct
characteristic peaks in their SERS spectra using the PCA algorithm. Detection of mixed
gases, compared to pure gases, holds more significance and may pose greater challenges
due to potential overlaps in characteristics among different components within the
mixture. This overlap can complicate identification and analysis. Analyzing the entire
spectral information holds promise for identifying mixed gases. A SERS sensor
fabricated using sputtering method was utilized to detect and identify the pure and
mixture VOC gases (Fig. 5. 1).

The VOC gases includes acetophenone, anethole, anisole, and BZD. The 14 types
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Fig. 5. 1. The Schematic diagram of realization of mixed VOC gases detected by
Surface-enhanced Raman scattering (SERS) sensors and identified by machine
learning recognition methods.
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Fig. 5. 2. SERS spectra of (a) the four pure compound vapors, (b) six binary
mixtures of compound vapors, and (c) four ternary mixtures of the compound vapors
acquired using the bare Surface-enhanced Raman scattering (SERS) sensor.

of VOC gases including four pure, six binary mixtures, and four ternary mixtures gases
were detected using the SERS sensors. The distinct SERS spectra were collected as



shown in Fig. 5.2. The vibrational mode assignments of these vapors in the SERS
spectra were summarized in Table. S5. 1. We can see that it is not a linear relationship of
SERS spectrum between the vapor mixtures and its individual component. As
introduced in the section 1.3, electron transfer plays an important role in SERS
enhancement. When molecules adhered to the metal nanoparticle surface, electrons
transfer from the metal surface to the molecules, forming charge transfer complexes. In
our consideration, when multiple vapor molecules simultaneously adhered to the surface
of nanoparticles, the electron transfer phenomenon could become more complex due to
the diverse interactions between different molecules and pathways of electron transfer.
As a result, we have observed the disappearance of certain characteristic peaks.

These VOC gases could be distinguished using a visualization method by
processing their distinct SERS spectra. The non-linear dimensionality reduction method
t-distributed stochastic neighbor embedding (t-SNE) reduced the normalized 307-
dimensional spectral data to two dimensions [153]. Subsequently, the reduced-
dimensional data was used to visualize the clusters of gases on a 2D plane as shown in
Fig. 5. 3. Except for anethole-benzaldehyde vapor, the other vapors were closely
gathered in a relatively separate space. The anethole—benzaldehyde cluster had three
distinct sub-clusters, one of which was adjacent to the anisole—benzaldehyde cluster,
one adjacent to the anethole—anisole—benzaldehyde cluster, and the other adjacent to the
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Fig. 5. 3. Visualization of 14 vapors using normalized SERS spectra processed by t-
distributed stochastic neighbor embedding (t-SNE) algorithm.



acetophenone—anisole—benzaldehyde cluster. This could be explained by the similarities
between the SERS spectra of the anethole—benzaldehyde mixture and the other vapor
mixtures.

The t-SNE visualization plot indicated that several vapor samples (anisole (three
samples), anethole—anisole (one sample), and benzaldehyde (one sample)) appeared in
acetophenone—benzaldehyde mixtures cluster. We used the naive Bayesian classifier
(NBC), support vector machine (SVM), and random forest classifier (RFC) recognition
models to correctly distinguish between the 14 VOAC vapor samples. The hyper-
parameters of SVM and RFC classifiers were optimized using grid search method, and
the NBC was used directly to recognize the vapors. The values for the parameters for
the classifiers are summarized in Table S5. 2.
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Fig. 5. 4. Accuracy of close-set classification on (a) principal component analysis
(PCA) and (b) wavelet data from normalized data after the parameters of models
were optimized.

We used PCA and discrete wavelet transform (DWT) to complete the VOAC
dataset dimension reduction process. Ten types of PCA-based dataset and 15 types of
DWT-based dataset were acquired. Using the processing method described earlier, the
mean accuracies achieved using the three classifiers for all datasets were determined. As
shown in Fig. 5.4a, the SVM classifier accuracy first increased and then remained
relatively stable as the number of principal components increased. The NBC accuracy
increased to 20 principal components and then decreased. The accuracy of RFC
continuously increased when the number of PC is less than 30, after that, it gradually
decreases. When there are too many principal components, it's possible and good



approach to introduce dimension redundancy. Both NBC and RFC may use these
features containing limited information for training, which can consequently reduce the
accuracy of classification. The SVM classifier was less sensitive than the NBC and RFC
to the number of principal components. The highest accuracy value of 99.4% was found
for the SVM classifier at 90 principal components. As shown in Fig. 5.4b, the
recognition accuracies for the different DWT datasets were not markedly different using
the NBC and SVM classifier but the accuracy value was slightly different for the RFC.
This could have been because the RFC was trained by randomly selecting data while
building the trees in the forest. Interestingly, the SVM classifier also performed best for
the DWT dataset, and the highest accuracy value was 99.3% for the coif3 dataset.

We compared the recognition accuracies of the different models for the normalized,
PCA-based and DWT-based datasets. The PCA-based dataset constructed using 90
principal components was labeled as PC_90 dataset, and the DWT-based dataset
processed using the coif3 filter was labeled as coif3 dataset. The performances of the
NBC on the PC_20 and db3 datasets were compared, the performances of the SVM
classifier on the PC_90 and coif3 dataset were compared, and the performances of the
RFC on the PC_70 and db2 datasets were compared. The optimized hyper-parameters
for each classifier are shown in Table. S5.3. Three types of datasets were identified
using the well-tuned classifiers, and the accuracies were shown in Fig. 5.5. The 14
vapor samples were clearly better distinguished between by the SVM classifier than the
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Fig. 5. 5. Best accuracy under different dataset (Normalized data, Normalized PCA
data, and Normalized DWT data) recognized by three models including naive
Bayesian classifier (NBC), support vector machine (SVM), and random forest
classifier (RFC).



other classifiers. The three models were less accurate for the normalized dataset than the
dataset pretreated using the dimension reduction method. Similar results were found
using the NBC and RFC for the three datasets. The maximum accuracy of the NBC was
found for the PCA-based dataset. The main features of the SERS spectra may have been
encapsulated by the 20 principal components. We concluded that the recognition
performance was better for the SVM method than the other methods.

5.2.2 SERS sensor modified with selective MIP

However, the presence of similar molecular structures within a mixed gas makes it
challenging to directly extract the contained components due to the overlapping
characteristic peaks in SERS spectra. Although the NMF algorithm can identify gas
components present in a spectral matrix, it cannot differentiate components within a
mixed gas spectrum. Upon spin-coating polymer films onto the sensor, distinct
responses are generated for different gases. Hence, modifying the sensor's surface with
molecularly imprinted polymer (MIP) is a feasible approach to aid in the extraction and
identification of components within mixed gases. The MIP film selectively allows
specific gases to pass through and enter the hotspots of the sensor, enabling the
collection of SERS spectra for that particular gas. By attaching multiple specific MIP
films onto the sensor, distinctive selectivity can be generated for various components
within a mixed gas, enabling the analysis of gas composition through a single SERS
spectrum integrated with machine learning models (Fig. 5. 6).
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Fig. 5. 6. (a) The constructed SERS sensor array in a 10 x 10 format. (b) Fabrication
between the two sensors coated using MIP file. (¢) The constructure of the sensor
coated with MIP film.

5.2.3 Dynamical visualization of VOC gases
Chapter 4 developed a SERS sensor array to visualize the spatial distribution of



gases evaporating from the odor sources. The localization and size of the odor source
were visualized using the proposed method under condition without airflow.
Additionally, the visualization results were obtained at a specific time-point,
representing a static visualization of gases. In our future work, we plan to record
visualization results at multiple time points and construct a time-series of changes,
enabling a dynamic and detailed understanding of the spatial diffusion process of VOC
gases.

5.2.4 Gas composition visualization system

The spatial distributions of gases evaporating from two odor sources were
visualized using a SERS sensor array. In the area where the gases coexisted, the NMF
model extracted feature information of these two gases, and they were identified by the
CNN model. However, in practical applications, multiple gas sources may coexist in the
same area, and they could potentially exist simultaneously in various areas. In future
work, our goal is to enhance the current experimental setup to simulate gas mixtures in
multiple areas and explore various matrix decomposition methods to visualize the
spatial distribution of gas components in the gas mixtures. Additionally, the SERS
sensor, coated with selective MIP, will be utilized to facilitate the extraction process of
the gas components. Subsequently, the extracted feature data undergoes initial
processing through an open-set recognition model to determine its alignment with
known gases. Following this, a closed-set recognition model is employed to recognize
the known gas, followed by visualization based on the extracted concentration
information of the gas. Hence, the gas composition visualization system can be
developed utilizing the SERS gas sensing method.
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Fig. S3. 1. (a) SEM images of Ag nanoparticles (b) EDX results of selected area

obtained from bare sensor.

(a) 6500

6000 1007
— 5500
£ 5000 -
o 4
2’45'00
EM}DO-
§ 3500
E 3000 4
2500
o
E 2000 4
o 1500 4 1033

1000
500 4

=

1605

0 T T T T T T T T
900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Raman shift (cm™)

(c) 4500

4000 4

2

o
S 3000

2

% 2500
c

2

£
T 1500

£

o
® 1000

500

0 r T T T T T T r
900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Raman shift(cm™)

c 3500
3

£ 2000

1180

1254

J/_Qﬂ/

1662
1610

0 T T T T T T T T
900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Raman shift (cm™)

Fig. S3. 2. SERS spectra of (a) phenethyl alcohol, (b) acetophenone and (c) anethole
solution detected by bare SRES sensor.
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and (c) PDMS coated SERS gas sensor.
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Fig. S3. 6. SERS spectra of acetophenone gas detected by (a) PAA, (b) PMMA and
(c) PDMS coated sensors.
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PAA, (b) PMMA and (c) PDMS coated sensors for anethole gas detection.
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1. NMF algorithm

The non-negative matrix was decomposed into a feature matrix and a weight
matrix using NMF. In this study, the IV matrix was constructed by applying the SERS
spectra collected from n points on the SERS sensor array, with each spectrum having
dimension of m. Therefore, the V was decomposed as

Vaxm = WaxrHrsm D
where matrix W represents the concentration of each component at each position,
matrix H represents the feature of each component, and r signifies the number of the
components extracted from the sensor array. For component 1, h,,,, represents the
feature of the component, and w,,»; represents the concentration of component 1 at each
position. Hence, w,,,.; is reconstructed as a matrix to visualize the spatial distribution of
the gas, generating a heatmap image. Finally, the component was identified based on the
h,«m feature result.
2. Gaussian fitting method

The experiment's measurements were influenced by several factors, such as variability in gas
flow and air interference. The concentration information was not considered to be ideal. Therefore,
the heatmap image was processed using Gaussian fitting model. The shape of the gas evaporating
from the odor source on the SERS sensor array was nearly circular or elliptical. Consequently, a 2-D

Gaussian function was employed to fit the spatial distribution, and this function is expressed as [154]:

I1(x,y) = Aexp(— (a(x — x0)* + 2b(x = x0)(y = ¥o) + (¥ —¥0)?))

cos?0  sin?0

= +
¢ 20,2 20,2
b= sin 260 4 sin 260

40,2 40,2

sin?6  cos?0
c=

= +
20,2 20,7

Here, (x,y) is the coordinate, x, and y, are the coordinates of the center point, A is the
amplitude, o, and o,, are the standard derivation components, and 6 is a rotation angle.
These parameters were fitted to construct a Gaussian distribution, and the outcome was
utilized to generate a visual representation of the spatial distribution of the gas.
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Fig. S4. 1. The fabrication process of the Surface Enhanced Raman Scattering
(SERS) sensors, obtained by transferring the Ag nanoparticles (NPs) monolayer film
to the glass substrate.
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Fig. S4. 2. Five position patterns of the fixed odor sources.
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Fig. S4. 4. The schematic graph depicting the detection of odor sources with
different sizes.
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Table

o)

C
UNSTNAN

700 900 1100 1300 1500 1700
a 1082 v(C=C) + v(C-S)
b 1148 B(C-H) + v(C-N)
Cc 1181 B(C-H)
d 1394 V(N=N) + v(C-N)
e 1440 V(N=N) + B(C-H)
f 1585 v(C=C)

Table. S4. 1. Vibrational mode assignments for 4-ATP.
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Table. S5. 1. The main vibrational mode assignments of four vapor samples.
Vapor Peak pc?smon Vibrational mode assignment
(cm™)
1007 Benzene ring breathing
Acetophenone : :
1606 Benzene ring stretching
1150 v(C-C) in-plane
Anethole 1176 v(C-0-C)
1610 Benzene ring stretching
, 1007 Benzene ring breathing
Anisole : :
1606 Benzene ring stretching
845 ¥(C-H)
Benzaldehyde 1007 Benzene ring breathing
1606 Benzene ring stretching

For the SVM method, the hyper-parameters were the regularization parameter (C),
kernel coefficient (gamma), and kernel type. For the RFC method, the hyper-parameters
were the number of trees in the forest (n_estimators), the number of features
(max_features), the minimum number of samples at a leaf node (min_samples_leaf),
and the function for evaluating the quality of a split (criterion).

Table. S5. 2. Optimal hyper-parameters for the SVM and RFC methods.

Recognition model Parameters value
C 1, 100, 1000, 10000,
100000, 1000000

SVM amma 0.000001, 0.00001, 0.0001,
9 0.001, 0.01, 0.1, 1
kernel “rbf’, “linear”
n_estimators 50, 100, 150, 200
max_features 6,12, 18, 24

RFC —

min_samples_leaf | 5, 10, 20, 30

criterion "gini", "entropy"




Table. S5. 3. Optimized hyper-parameters for the SVM classifier and RFC method

to give the best accuracy.

Recognition model Dataset Parameters
'C’: 100
Normalized data |'gamma’: 0.01
'kernel’: rbf
'C’: 100
SVM PC_90 data '‘gamma’: 0.1
'kernel’: rbf
'C: 10
COIF3 data '‘gamma’: 0.1
'kernel’: rbf
'n_estimators’: 200
Normalized data Imgx_features: 24,_
min_samples_leaf: 5
‘criterion’: entropy
'n_estimators’: 150
REC PC 70 data Imgx_features: 12,'.
- min_samples_leaf: 5
‘criterion’: ‘gini’
'n_estimators’: 20
DB?2 data max_features’: 12

'min_samples_leaf: 5
‘criterion’: ‘entropy’




