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Abstract

1-Kestose (KES), a dietary fiber and prebiotic carbohydrate, benefits various
physiological functions. This study aimed to examine whether diets supple-
mented with KES over three consecutive generations could significantly affect
some host physiological aspects, including behavioral phenotypes and gut mi-
crobial ecology. Mice that received KES-supplemented diets for three genera-
tions demonstrated increased activity compared with those fed diets lacking
KES. Furthermore, the KES group showed increased striatal dopamine (DA) and
serotonin (5-HT) levels. The observed increase in DA levels within the striatum
was positively correlated with locomotor activity in the KES group but not in the
control (CON) group. The a-diversities were significantly lower in the KES group
compared to the CON group. The three-dimensional principal coordinate analy-
sis revealed a substantial distinction between the KES and CON groups across
each generation. At the genus level, most gut microbiota genera exhibited lower
abundances in the KES group than in the CON group, except for Bifidobacteria
and Akkermansia. Spearman's rank-order analysis indicated significant negative
correlations between the striatal DA levels and a-diversity values. These find-
ings suggest that prolonged supplementation with KES may stimulate increased
locomotor activity along with elevated striatal DA levels, which are potentially
associated with KES-induced alterations in the gut microbiota.
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1 | INTRODUCTION

Different types of diets, such as Western and plant-based
diets, can have distinct effects on the gut microbiota.
For example, a Western diet, which typically includes
high levels of saturated fats, refined sugars, and pro-
cessed foods (Martinez-Gonzalez & Bes-Rastrollo, 2014;
Mozaffarian et al., 2011; Popkin et al., 2012), has been
associated with a decrease in microbial diversity and
an increase in certain bacteria (Statovci et al., 2017).
However, microbial diversity is contentious as a mea-
sure of host health as well as of developmental cognitive
function (Carlson et al., 2018). In contrast, a plant-
based diet rich in fiber, fruits, vegetables, and whole
grains promotes a more diverse gut microbiota (Tomova
et al., 2019).

1-Kestose (KES) is a fructo-oligosaccharide, a type of
dietary fiber, and a prebiotic carbohydrate found in var-
ious plant sources (Suzuki et al., 2006). After consump-
tion, KES moves through the gastrointestinal tract and
reaches the large intestine, where it undergoes fermenta-
tion by gut bacteria. This fermentation process generates
short-chain fatty acids, which provide energy to the cells
lining the colon and help regulate various host functions
(Cummings, 1981). Supplementation with KES increases
the abundance of some bacteria, such as Bifidobacterium
and Lactobacillus (Tochio et al., 2016). Additionally, KES
supplementation suppresses the development of diabe-
tes in type 2 diabetes-prone rats (Watanabe et al., 2020)
and improves insulin sensitivity in overweight adults
(Watanabe, Tochio, et al., 2021).

More than 1000 species of microbes, referred to as
the gut microbiota, are present in the human gut (Qin
et al., 2010). Moreover, Sender et al. described that the
number of bacteria in the body is actually of the same
order as the number of human cells and that their total
mass is approximately 0.2kg (Sender et al., 2016). Several
recent studies have indicated that gut microbes can play
a role in regulating body weight (Dabke et al., 2019) and
the pathophysiology of the brain (Sampson et al., 2016).
The gut microbiome influences the stress response of the
central nervous system (Sudo et al., 2004) and other be-
haviors (Clarke et al., 2013; Heijtz et al., 2011; Neufeld
et al., 2011; Nishino et al., 2013). This concept, now called
the microbiota-gut-brain axis (Collins et al., 2012; Cryan
& Dinan, 2012; Forsythe et al., 2010), is a model indicat-
ing refined cross-talks between the microbiota, gut, and
brain. In addition, Li et al. demonstrated the role of diet
in driving microbiota changes in regulating host behavior
(Li et al., 2009).

Therefore, it is intriguing to speculate that dietary
components like KES can influence the host's behavior by
modulating the microbiota-gut-brain axis. However, little

is known about the potential effects of long-term dietary
consumption of KES across multiple generations on be-
havioral phenotypes. Hence, the present study aimed to
investigate whether diets supplemented with KES over
three consecutive generations could significantly affect
physiological aspects, including body weight gain and be-
havioral phenotypes, along with their effects on gut mi-
crobial ecology.

2 | METHODS

2.1 | Animals

Four-week-old male and female BALB/c mice were ob-
tained from KBT Oriental Co. Ltd. (Saga, Japan). The
mice were housed individually and maintained under
previously described conditions (Asano et al., 2012;
Kimura-Todani et al., 2020). The cages were made of plas-
tic with wiretops. Animal experiments were approved
by the Ethics Committee on Animal Experiments of the
Graduate School of Medical Sciences, Kyushu University
(A20-175-0) and were conducted in compliance with
the Guidelines for Animal Experiments of the Graduate
School of Medical Sciences, Kyushu University, as well as
the Law (No. 105) and Notification (No. 6) of the Japanese
Government.

2.2 | Study protocol

Mice in the first generation (G1) received an isocaloric
diet supplemented with 5% KES (KES, B Food Science
Co., Ltd., Chita, Japan) or no supplement (CON) when
they reached 5weeks of age. The composition of the
CON diet was based on the AIN-93G diet (Reeves
et al., 1993), and an equivalent quantity of KES was
used to replace sucrose in the KES diet. Feed was pro-
vided as pelleted food. The mice were divided into two
distinct groups. One group was used for behavioral ex-
periments and sample collection, as detailed below, and
the other group was designated for breeding purposes.
Breeding was performed according to the following pro-
tocols. Briefly, at 8 weeks of age, male and female mice
were placed together in a cage for mating. Male/female
pairs from the CON and KES groups were maintained
on CON and KES diets, respectively. Approximately
3weeks after mating, 5-10 offspring were born per
mother, collectively referred to as the second generation
(G2). The G2 offspring, divided into the KES and CON
groups, were subjected to the same treatment as the G1
mice. Subsequently, the offspring born to G2 mice, re-
ferred to as the third generation (G3), underwent the
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same behavioral evaluation protocol as G1 and G2 mice.
G2 and G3 mice were similarly housed individually after
weaning, and then fed CON or KES diets immediately
after weaning. Only male pups were carried forward, la-
beled as G2 and G3, and used in the experiments. Female
pups were also maintained for mating in a separate cage.

Body weight and food intake were measured twice
weekly throughout the observation period. Behavioral
experiments, namely the open-field (OF), elevated plus-
maze (EPM), and forced swimming (FS) tests, were
conducted on all mice between 8 and 10weeks of age.
Subsequently, blood samples were collected via cardiac
puncture under anesthesia (using 0.3 mg/kg medetomi-
dine, 4mg/kg midazolam, and 5mg/kg butorphanol).
One or two days after the last behavioral test, the mice
were euthanized by cervical dislocation, and the brain
and fecal samples were collected and promptly frozen
on dry ice. These samples were then stored at —80°C
until further analyses.

2.3 | Behavioral analyses

Behavioral assessments of the mice were conducted
using OF, EPM, and FS tests, as described previously
(Hata et al., 2019; Kimura-Todani et al., 2020; Suemaru
et al., 2006). These tests were administered under low illu-
mination (<501x) between 9:00 AM and 5:00 PM, following
the initiation of dietary manipulation in the following se-
quence: OF, EPM, and FS tests. The tests were performed
alternately among the two groups to minimize the impact
of time-related variations.

The OF test was used to evaluate anxiety levels and lo-
comotor activity. Briefly, the mice were placed individu-
ally in the center of an OF box (45x45x45cm, LxBxH)
divided equally into 16 sub-squares (4x4) (Kimura-
Todani et al., 2020; Nishino et al., 2013). Behaviors were
recorded and quantified using a SMART3.0 computer sys-
tem (Panlab Harvard Apparatus, USA). The total distance
traveled in 20 min and the time spent in the 12 peripheral
sub-squares over 20 min were calculated as representative
parameters of spontaneous locomotor activity and anxi-
ety-like behavior, respectively. Prior to testing each animal,
the entire OF arena was cleaned with a 70% ethyl alcohol
solution and dried with paper towels (Gunn et al., 2011)
before the next mouse.

The EPM test was performed as previously described
(Kimura-Todani et al., 2020; Walf & Frye, 2007). The ap-
paratus consisted of two open (30 X 5cm) and two closed
(30x5x15cm) arms extending from a central platform
(5% 5cm) and the test was administered in a quiet room
illuminated with dim light. The number of entries into
the open or closed arms and the time spent in the open
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or closed arms during the test period were recorded.
The time spent in open arms was used as a parameter
of anxiety-like behavior. The total distance traveled was
used as a parameter of locomotor activity. An entry was
defined as the center of mass of the mouse entering the
arm. The behavior of the tested animal was recorded for
5min using a fully automated system. After each trial,
the maze was cleaned with 70% ethyl alcohol solution
and dried with paper towels (Gunn et al., 2011) before
the next mouse.

The FS test was performed according to the procedures
described elsewhere (Suemaru et al., 2006). Briefly, mice
were placed in a cylindrical container filled with water
(temperature 23-24°C, water depth 15cm). The duration
of immobility during a 6-min session was recorded and
used as an indicator of depression-like behavior. A video
camera-based computer tracking system (SMARTS3.0,
Panlab Harvard Apparatus, USA) was used to record the
activities during each test. All behavioral tests were eval-
uated by researchers who were blinded to experimental
conditions.

2.4 | Measurement of monoamine levels
in the brain

Monoamines and their metabolites were quantified as pre-
viously described (Hata et al., 2017; Nishino et al., 2013;
Watanabe, Mikami, et al., 2021). All mice were eutha-
nized by cervical dislocation at 8 weeks of age, and the
blood, brain, and fecal material were collected. The ex-
cised brains were dissected into the medial prefrontal cor-
tex, striatum, hippocampus, and brain stem. Each sample
was prepared as previously described (Nishino et al., 2013;
Zhang et al., 2022). Briefly, the samples were homog-
enized in 0.2M perchloric acid containing 100mM diso-
dium EDTA. The homogenate was incubated for 30 min
for deproteinization and then centrifuged at 20,000 x g for
10min at 4°C. The pH of the supernatant was adjusted to
approximately 3.0 by adding 1 M sodium acetate, and the
resultant supernatant was filtered through a 0.22pm fil-
ter (Merck Millipore Ltd., Ireland). The resultant 30 pL of
filtrate was injected into an HPLC system (Eicom, Kyoto,
Japan) equipped with a 150x3.0mm octadecyl silane
column (SC-50DS, Eicom) and an electrochemical de-
tector (ECD-300, Eicom, Kyoto, Japan) set at an applied
potential of +0.75V versus an Ag/Ag Cl reference analyti-
cal electrode. The levels of monoamines, dopamine (DA)
metabolites (dihydroxyphenylacetic acid [DOPAC] and
HVA), NE metabolites (MHPG), and 5-HT metabolite
(5-hydroxyindoleacetic acid [5-HIAA]) were quantified in
the brain. The system had a detection limit of 0.1 pg/sam-
ple for all monoamines.
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2.5 | Analysis of the fecal microbiome
DNA was extracted from fecal samples using a commer-
cial QuickGene DNA tissue kit (DT-S, Kurabo, Osaka,
Japan), as previously reported (Inoue et al.,, 2016;
Tsukahara et al., 2018). The extracted DNA was sub-
jected to a polymerase chain reaction (PCR) targeting
the V3-V4 region of the bacterial 16S rRNA gene using
primers 341F (5'- TCGTCGGCAGCGTCAGATGTGT
ATAAGAGACAGCCTACGGGNGGCWGCAG-3) and
805R (5-GTCTCGTGGGCTCGGAGATGTGTATAAG
AGACAGGACTACHVGGGTATCTAATCC-3"). The ap-
plied PCR conditions were as follows: 1 cycle at 95°C for
3min, 25cycles of denaturation 95°C for 30s, annealing
at 55°C for 30s and extension at 72°C for 305, and 1 final
cycle at 72°C for 5min. Electrophoresis was then per-
formed on the resultant amplicons to confirm that the
specimen was PCR-amplified, and then purified using
NucleoFast 96 (U3100B; Takara Bio, Shiga, Japan). A sec-
ond PCR was conducted using the KAPA Hifi Hotstart
Ready Mix (KK2602; Kapa Biosystems, Wilmington,
MA, USA) to attach a unique combination of dual indi-
ces (indices I5 and I7). The resultant PCR product was
then purified using SequalPrep Normalization Plate
Kit (A1051001; Life Technologies, Tokyo, Japan). Each
of the normalized amplicon was then evenly pooled
and concentrated using AMPure XP beads (A63881;
Beckman Coulter, Tokyo, Japan). Final DNA concentra-
tions were confirmed by KAPA Library Quantification
Kits (KK4828; Kapa Biosystems). The resulting libraries
were sequenced using an Illumine Miseq platform with
Miseq Reagent Kit v3 (MS-102-3003; Illumina). The ob-
tained sequences were filtered using the bowtie-2 pro-
gram (version 2-2.2.4) to remove reads mapped to the
PhiX174 sequence. Low-quality reads, defined as those
with a PHRED quality score of less than 17, a length of
less than 150bp, and an average quality score of less
than 25, were excluded. Paired-end reads that passed
the quality filters were combined, and the resulting se-
quences were analyzed using the Quantitative Insights
into Microbial Ecology 2 (QIIME2) (Bolyen et al., 2019).
Sequences were assigned to operational taxonomic
units (OTUs) using open-reference OTU selection with
a 97% pairwise identity threshold and SILVA reference
database. The minimum read count after filtering was
19,973, with a median read count of 34,772.

2.6 | Statistical analysis

Continuous data are presented as mean+standard de-
viation (SD), whereas non-normally distributed param-
eters, as determined by the Shapiro-Wilk normality test,

are reported as median with interquartile range (IQR).
Statistical analyses of all animal experiments were per-
formed using the JMP PRO v.17 software package for
Windows (SAS Institute, Japan).

Repeated-measures analysis of variance (ANOVA)
was employed to compare body weight and food intake
between the CON and KES groups. Behavioral parame-
ters and brain monoamine levels in the groups that re-
ceived diets with or without KES were evaluated using
a two-way ANOVA. The relative abundance of the gut
microbiota was assessed using the Kruskal-Wallis test,
and when the p-values were lower than the Bonferroni-
corrected threshold based on the total number of tests,
the Steel-Dwass test was applied to determine signif-
icant differences between the two indicated groups.
Associations between the total striatal DA levels and
distance measured in the OF test, as well as between
striatal DA levels and the relative abundance of bacte-
rial species, were examined using Spearman's rank cor-
relation coefficients.

For the generation of relative abundance plots and
calculation of a-diversity metrics (Shannon index, Chao
1, and observed species) and p-diversity parameters
(weighted and unweighted UniFrac metrics), the QIIME2
was used. Principal coordinate analysis (PCoA) plots were
created using the unweighted UniFrac method and visu-
alized as 3D graphs using QIIME2. The a-diversity of the
gut microbiota was assessed using two-way ANOVA. As
the p-values were lower than the Bonferroni-corrected
threshold based on the total number of tests, the Tukey-
Kramer's test was applied to determine significant dif-
ferences between the two indicated groups. To evaluate
the differences in bacterial composition among different
groups of mice based on p-diversity, unweighted UniFrac
distances from each group to G1-CON were evaluated
using the Steel test. Moreover, permutational multivariate
ANOVA (PERMANOVA) was also conducted using the
Adonis function in the vegan package in R Studio using
R 3.6.2.

3 | RESULTS

3.1 | KES supplementation had no effect
on body weight gain

As shown in Figure 1, repeated-measures ANOVA did not
show a significant difference in the percentage of body
weight relative to the respective basal weight between the
CON and KES groups at any generation (G1, F »,,=0.12,
p=0.73; G2, Fy=149, p=0.24; G3, F,,=2.59,
p=0.12). Similarly, there was no difference in food con-
sumption between the CON and KES groups at any
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FIGURE 1 Effects of KES administration on body weight. After weaning, body weight in the CON and KES groups (n=12) of the first
generation (G1), (a), second generation (G2), (b), or third generation (G3), (c) was measured twice a week for seven consecutive weeks. The
CON and KES mice at 4 weeks of age weighed 20+0.7 and 22.8 +1.2g in G1, 22.1+1.6 and 22.5+0.9gin G2, and 20.8 +1.2 and 21 +2.1¢g

in G3. All data are expressed as mean + SD. CON, control; group fed control diet without KES supplementation; KES, group fed KES-

supplemented diet.

generations (G1, F(; 5,=1.36, p=0.25; G2, F(;,,)=1.59,
p=0.22; G3, F(; 5,,=0.56, p=0.46).

3.2 | KES-supplemented diets induce
behavioral changes

As summarized in Table 1 and Figure 2, the two-way
ANOVA results revealed significant effects of diet on the
total distances traveled. Locomotor activity was higher in
the KES group than in the CON group when evaluated
using OF (Figure 2a, F(; 46)=8.02, p=0.0061) and EPM
(Figure 2b, F(4¢5=4.25, p=0.0433) tests. Generations

significantly affected immobility time, as measured by
the FS tests (F, 65)=4.65, p=0.0129). In contrast, no sig-
nificant effects of diet or generation were observed for any
other behavioral parameters (Table 1).

3.3 | KES exerts a significant effect on
monoamine concentrations in various
regions of the brain

As summarized in Table 2, diet significantly affected
5-HT, DA, and DOPAC levels in the striatum (5-HT,
F64=9.16, p=0.0035; DA, F(3¢;=11.61, p=0.0011;
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g ’é‘ p p=0.0008) and NE (F(45=3.60, p=0.0329) in the
B ¥ = § frontal cortex, 5-HT (F(1,65)=5.19, p=0.0044), 5-HIAA
g 2828 22z 52 (F165=5.90, p=0.0081), DA (F(;5=6.30, p=0.0031),
e HOE :;5 and MHPG (F; 45=3.83, p=0.0268) in the brain stem, and
- KA ER- 5-HT (F(y.41)=8.52, p=0.0008) and 5-HIAA (F; s, =8.61,
= E= £ p=0.0007) in the hippocampus. Only DOPAC levels in the
'% - %ﬂ & brain stem (F; ¢5)=3.83, p=0.0267) showed a significant
g § § § ] g B interaction between diet and age.
O S S S 4 b ©
O V. V VvV 5 <2
S 33
S v o = %73 . .
< -2~ 8 8382 % P 3.4 | Striatal DA levels correlate with
s 2 o ey . .
2| . E88 ¥ s<S<S :3 locomotor activities in the mice fed
Q Q . Q L‘: °
A S < £ s KES-supplemented diets
3 M
~ K<
-] v
o = © i g Next, we used Pearson's correlation coefficients to exam-
S 82 E = %" ine the relationship between brain monoamines and be-
CiE S 8 88 EE havioral characteristics.
£ s
- ; . § &3¢S 3 = E Striatal DA levels were significantly correlated with lo-
2 al B e comotor activity measured using OF tests in the KES group
% £ but not in the CON group (KES, r=0.4121, p=0.0154;
S5 3 = <5 CON, r=0.2384, p=0.1615).
518 58 s
328 - ,
2] =8 S §8E 3% 3.5 | KES-supplemented diets alter gut
8 s 85 873 microbial diversities
O v g 2
~ S g9 ek oo .
a9 93 & . As summarized in Table 3 and Figure 3, the two-way
] 2 s ape . .
= I ?; % ¥, 558 ANOVA showed significant effects of diet and generation
Bl |8 ;r' A § ¢ ER on a-diversities such as Shannon indices (F( ¢5)=58.53,
1ol =2 = -z < 8 p<0.0001; Generations, F¢5=>54.34, p<0.0001),
S 3358 %3 (.69
© g8 g8 g g g Chao-1 values (F(1,65)=26.64, p<0.0001; Generations,
g 2 @ 5 vV ° % % F1,65=29.14, p<0.0001), and observed features (Diet,
& s & s 9 F(65=53.2, p<0.0001; Generations, F¢5=43.34,
< <
SR & 5 Az p<0.0001). The a-diversity was significantly lower in
&5 S ¥ @ E 2 § the KES group than in the CON group. In addition, both
g §3 o groups had a significant reduction in a-diversity across
5) @ % 5 & 3 the three generations. Regarding p-diversity, PCoA using
o | e - 2] . . . .
% T2 I s g 3 ﬁ 2 E unweighted UniFrac distances for each group of mice re-
o9 S . \O S 2 - o g g p
N N (=)
3 bt % g/ © 835 33§ § vealed a significantly different profile between the groups
& ~ < IS 4 $» & (Figure 4a). This was confirmed using PERMANOVAs,
v & e = A g2 2
“ ) SE 2 which showed a significant difference between the six
g »‘-: s i E groups (f=6.99, p<0.001). The KES group in the third
2 ~- RN R generation showed the greatest difference in unweighted
@) A N a . 4 . a o
© o 8 s ¢ S w x < So 3 UniFrac distances compared to the CON group in the first
2 = § 228 TS 8 25 o generation (Figure 4b, p <0.001).
Z 0|8 5 YWS O 333 ~5 H . . I . )
Z Olo| 2 2 S s g M Taxonomic analysis revealed a significant difference in
o 3 .
é Ba g the relative abundances of some phyla between the KES
% 2 o 8 m §§ g3 and CON groups (Figure 4c and Table S1). Regarding
< Ei § % S n ‘Z" 2 é differences across generations, the relative percentage of
< = =
- & 5 LE 5 =8 § 4 the phylum Actinobacteria significantly increased in the
= = 0 =
ﬁ 2 § ~ = § _ = E = KES group in the second and third generations relative
= 2 8 E 2z 8 I § g g to the first generation. Such an increase in the phylum
: ©Hl © ©®m O 55232 Actinobacteria was also found in the CON group in the third
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FIGURE 3 Effects of KES on microbial a-diversities. (a) Chao-1 values, (b) Shannon indices, and (c) observed features in the G1, G2, or
G3 generation of CON and KES groups are shown as a parameter of a-diversity. The horizontal axis indicates the number of sequence reads.

All data (n=12 per group) are mean + SD.
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FIGURE 4 Effects of KES on microbial f-diversities and taxonomic distribution. (a) The PCoA shows unweighted UniFrac distances
for each group of mice (n=12 per group). Each colored ellipse covers 95% of the samples belonging to a cluster. (b) Unweighted UniFrac

distances to the G1 CON are visualized as box plots with medians (middle lines), first and third quartiles (box boundaries), and 1.5 times

interquartile range (whiskers). An asterisk indicates a significant difference between the two indicated groups when evaluated using the
Steel test (G1-CON vs. G2-KES, p <0.0001; G1-CON vs. G3-CON, p=0.0113; G1-CON vs. G3-KES, p <0.0001). (c) Bar diagraphs depict the
taxonomic distribution within each group of mice at the phylum level. CON, control; group fed control diet without KES supplementation;

KES, group fed KES-supplemented diet.

generation compared to the CON group in the first genera-
tion. The KES group exhibited a significant decrease in the
relative abundance of the phylum Firmicutes compared
with the CON group throughout the different generations.
Several bacterial genera showed significant differences
between the KES and CON groups across different gener-
ations. Most genera identified in this study were lower in
the KES group than in the CON group, whereas the genera
Bifidobacteria and Akkermansia were higher in the KES
group than in the CON group (Table S2). Similarly, at the
species level, most species were lower in the KES group
than in the CON group, whereas some species, including
Akkermansia muciniphila and Clostridiales, were higher
in the KES group than in the CON group (Table S3).

3.6 | Correlations of striatal DA with
o-diversities and bacterial genera

Finally, we examined the relationship between striatal DA
and bacterial composition.

Asshown in Table 4, Spearman’s rank-order analysis re-
vealed a significant negative correlation between the stri-
atal DA levels and a-diversity values (observed features,
Shannon indices, and Chao-1) in the KES group but not
in the CON group. In addition, the genera Enterococcus,
Staphylococcus, Colidextribacter, and UCG-003 were nega-
tively correlated with striatal DA levels in the KES group,
although this correlation was not observed in the CON
group (Table S4).
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TABLE 4 Correlations between striatal DA and alpha diversities.
CON KES
Spearman p-value p-value Spearman p-value p-value
Observed features —0.274 0.105 —0.659 2.25839E-05
Shannon —0.34 0.043 —0.645 3.87626E-05
Chaol —0.243 0.153 —0.676 1.139E-05

Note: Associations between striatal DA levels and alpha-diversities were evaluated using Spearman’s rank-order test. Bold figures indicate a significant

difference between the two indicated variables.

Abbreviations: CON, group fed a control diet without KES supplementation; DA, dopamine; KES, group fed a KES-supplemented diet.

4 | DISCUSSION

In the present study, mice fed KES-supplemented diets
for three consecutive generations were more active than
those fed diets without KES. The KES group also exhib-
ited increased brain DA and 5-HT levels in the striatum.
Such increased DA levels in the striatum were positively
correlated with locomotor activity in the KES group but
not in the CON group. Regarding the gut microbial ecol-
ogy, a-diversity (observed features, Shannon indices,
and Chao-1 values) was significantly lower in the KES
group than in the CON group. Three-dimensional PCoA
revealed a significant difference between the KES and
CON groups for each generation. Regarding the relative
abundance at the genus level, most genera identified
in this study were lower in the KES group than in the
CON group. In contrast, the genera Bifidobacteria and
Akkermansia in the KES group were higher than in the
CON group. Spearman's rank-order analysis showed sig-
nificant negative correlations between striatal DA levels
and a-diversity values, as well as significant negative rela-
tionships between striatal DA levels and several genera in
the KES group, whereas such correlations were not found
in the CON group. Collectively, these results suggest that
long-term KES supplementation can induce an increase
in locomotor activity concomitant with increased striatal
DA levels, which may be related to KES-induced changes
in the gut microbiota.

In the current study, KES supplementation did not
affect weight gain across the three generations, indicat-
ing that KES could be safely ingested over long periods
without any apparent impact on physical development.
Watanabe et al. (Watanabe, Tochio, et al., 2021) reported
that rats fed diets containing 5% KES showed a significant
decrease in serum insulin levels compared with rats fed a
standard diet without KES, suggesting that KES may im-
prove insulin sensitivity. In this study, whether KES sup-
plementation could have an insulin resistance-improving
effect was unclear. Further studies are required to eluci-
date the effects of KES on the host metabolic functions.

In the present study, KES-supplemented diets accel-
erated locomotor activity. Moreover, locomotor activity

was correlated with striatal DA concentration in the KES
group. The precise mechanism by which KES induces a
change in behavioral phenotype remains to be clarified;
however, Dohnalova et al. (Dohnalova et al., 2022) pointed
to a potential gut-brain pathway that regulates exercise
performance. They investigated the influence of the in-
testinal microbiome on brain circuits involved in exercise
performance using comprehensive, deeply profiled, genet-
ically, and metagenomically diverse mice maintained in
gnotobiotic conditions. They demonstrated that the pro-
duction of endocannabinoid metabolites in the gut, which
is dependent on the microbiome, stimulated the activity
of sensory neurons expressing the transient receptor po-
tential cation channel subfamily V member 1, initiating
an exercise-induced afferent signal in the brain that ulti-
mately led to the downregulation of monoamine oxidase
expression in the striatum. This downregulation increased
DA levels in the striatum and enhanced exercise capabil-
ity. Thus far, we do not have any data on whether this mi-
crobiome-derived endocannabinoid pathway is involved
in the KES-induced increase in locomotor performance;
however, this is an intriguing question that should be an-
swered in future research.

Dietary supplementation with KES positively influ-
ences the abundance and activity of Bifidobacteria in
the gut (Koga et al., 2016; Shibata et al., 2009; Watanabe,
Tochio, et al., 2021). This effect is attributed to the selec-
tive stimulation and utilization of KES by Bifidobacteria.
Consistent with previous studies (Koga et al., 2016;
Shibata et al., 2009; Watanabe, Tochio, et al., 2021),
the genus Bifidobacteria was more abundant in the
KES group than in the CON group in the current study.
Notably, a-diversity was significantly lower in the KES
group than in the CON group, and the greatest differ-
ence between the two groups was observed in the third
generation. In addition, a significant reduction in di-
versity was found throughout three consecutive gener-
ations in both groups of mice. Several factors can reduce
gut microbial diversity (Bailey et al., 2011; Imhann
et al., 2016; Jernberg et al., 2010; Sonnenburg et al., 2016;
Yatsunenko et al., 2012). For example, antibiotics can
kill some bacteria, decreasing overall microbial diversity
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(Jernberg et al., 2010). Diet is the most important factor
that substantially affects gut microbial diversity (David
et al.,, 2014; Moles & Otaegui, 2020; Sonnenburg
et al., 2016). Generally, the more diverse the diet, the
more diverse the microbiome and the more adaptable it
is to perturbations (Heiman & Greenway, 2016). Chow
diets exhibit greater heterogeneity than the purified
diets employed in nutritional experiments, as they com-
prise macronutrients obtained from diverse sources
such as whole wheat, dehulled soybean meal, ground
corn, animal fat, and condensed whey (Pellizzon, 2016).
Conversely, the diets employed in this study were signifi-
cantly less diverse, such as AIN-93G, which incorporates
casein as the protein source, corn starch and sucrose as
the carbohydrate sources, and corn oil as the exclusive
fat source (Reeves et al., 1993). Therefore, the long-term
loss of dietary diversity may contribute to the emergence
of reduced gut microbiome diversity. Further studies are
needed to fully understand the mechanisms underlying
the long-lasting effects of dietary changes on gut micro-
bial diversity over generations.

Behavioral changes induced by microorganisms have
been observed in diverse host species (Ezenwa et al., 2012)
and under specific circumstances. Notably, Toxoplasma
infection has been well-documented to alter mouse behav-
ior (House et al., 2011; Vyas et al., 2007). Specifically, mice
infected with Toxoplasma display insensitivity to the odor
of cats, which are the end hosts of the parasites, rendering
them more susceptible to predation. This phenomenon,
known as “behavioral manipulation” or “mind control”
(Sampson & Mazmanian, 2015; Thomas et al., 2005),
facilitates the parasites’ more efficient transmission to
their definitive host via a series of orchestrated processes.
Interestingly, Schnorr et al. (Schnorr et al., 2014) explored
the comparison of gut bacteria and metabolites between
Hadza hunter-gatherers and Western populations. Their
findings revealed greater bacterial diversity in the gut mi-
crobiota of Hadza individuals than in that of Westerners.
This study suggests that the transition from a hunter-gath-
erer to an agricultural lifestyle during the Neolithic era may
have resulted in significant alterations in enteric bacterial
composition due to drastic changes in diet. Therefore, it is
interesting to speculate that such diet-induced shifts in the
gut microbiome may have contributed to an acquisition
of social behavior (Sherwin et al., 2019). Although studies
directly linking dietary differences, gut microbiota, and
behavioral changes in animals are still limited, the current
results using one of the prebiotics, KES, may be a useful
animal model for clarifying this speculation. Further in-
vestigation into the specific mechanisms by which the gut
microbiota influences behavior in different dietary niches
would help deepen our understanding of the relationship
between diet, gut microbiota, and behavior.

This study consists of several notable limitations that
warrant discussion. First, one of the main limitations per-
tains to the methodology of substituting sucrose, in the
dietary regimen, with KES. This substitution presents a
substantive challenge in disentangling the precise effects
of KES on host behaviors (i.e., particularly those related
to reward mechanisms) and on the composition of the gut
microbiota. Second, the evaluation of locomotor activity
could studied more precisely through the use of metabolic
cages, allowing for the assessment of energy expenditure
in the context of 24-h locomotor patterns. Lastly, our ex-
amination primarily focused on monoamine levels within
select regions of the brain, with no concurrent exploration
of relevant metabolites, proteins, or mRNA expression.
Overall, these limitations can be used as a framework for
the structuring of further, fine-scale studies intended to
validate findings brought forth through this study.

In conclusion, the long-term administration of dietary
KES across multiple generations resulted in modification
of the host's locomotor activity, coinciding with elevated
levels of striatal DA and reduced diversity in gut microbial
populations. Enhanced functioning of the dopaminergic
system in the striatum may be responsible for the observed
increase in locomotor activity. Clearly, more refined and
thorough research is required to explore the connection
between transgenerational dietary effects and behavioral
outcomes; however, such studies will enhance our under-
standing of the intricate interplay between gut microbiota,
diet, and host behavior.
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