九州大学学術情報リポジトリ Kyushu University Institutional Repository

## Borane-Catalyzed Double Sila-Friedel-Crafts Reaction for the Synthesis of Silacycles

董, 亜芳

https://hdl.handle.net/2324/4772311

出版情報:Kyushu University, 2021, 博士(理学), 課程博士 バージョン: 権利関係:

# Borane-Catalyzed Double Sila-Friedel–Crafts Reaction for the Synthesis of Silacycles

By

Yafang Dong

A dissertation submitted to the graduate faculty for the degree of DOCTOR OF PHILOSOPHY

Major: Organic Chemistry Program of Study Committee: Interdisciplinary Graduate School of Engineering Sciences Institute for Materials Chemistry and Engineering

> Supervisor: Prof. Dr. Yoichiro Kuninobu

> > Kyushu University Yafang Dong 2021/08

## CONTENTS

| ABSTRAC          | CT                                                                                                                         | 1                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Chapter 1        | Introduction of C(sp <sup>2</sup> )–H Silylation and Its Application                                                       | 5                        |
| 1.1 Trans        | ition Metal-Catalyzed Silylation of C–H Bonds                                                                              | 6                        |
| 1.2 Sila-F       | Peiedel–Crafts Reaction                                                                                                    | 13                       |
| 1.3 Appic        | cations of C–H Silylation                                                                                                  | 22                       |
| 1.4 Silac        | yclic Compounds                                                                                                            | 26                       |
| 1.5 Purpo        | se, Importance, and Design of My Researches                                                                                | 29                       |
| Chapter 2        | Lewis Acid-Catalyzed Synthesis of Silafluorene Derivatives fro<br>Dihydrosilanes via a Double Sila-Friedel–Crafts Reaction | m Biphenyls and<br>31    |
| 2.1 Intro        | duction                                                                                                                    |                          |
| 2.2 Resu         | lts and Discussion                                                                                                         |                          |
| 2.3 Conc         | lusion                                                                                                                     | 49                       |
| 2.4 Expe         | rimental Section                                                                                                           | 50                       |
| Chapter 3        | Synthesis of Six-membered Silacycles by Borane-Catalyzed Do<br>Crafts Reaction                                             | uble Sila-Friedel–<br>69 |
| 3.1 Introduction |                                                                                                                            | 69                       |
| 3.2 Resul        | ts and Discussion                                                                                                          | 73                       |
| 3.3 Concl        | usion                                                                                                                      | 79                       |
| 3.4 Expe         | rimental Section                                                                                                           | 80                       |
| Chapter 4        | Facile Synthesis of Tribenzosilepins from Terphenyls and Dihy Double Sila-Friedel–Crafts Reaction                          | drosilanes by<br>87      |
| 4.1 Introd       | luction                                                                                                                    |                          |
| 4.2 Resul        | ts and Discussion                                                                                                          | 90                       |
| 4.3 Concl        | usion                                                                                                                      | 102                      |
| 4.4 Expe         | rimental Section                                                                                                           |                          |

| Chapter 5   | Conclusion  |     |
|-------------|-------------|-----|
| Supporting  | Information | 117 |
| References  |             |     |
| Publication | List        |     |
| Acknowled   | lgments     |     |

#### ABSTRACT

This dissertation focuses on the investigation of sila-Friedel–Crafts reaction for the synthesis of silacyclic compounds. The direct synthesis of silacycles is challenging because it generally relies upon the lithiation of the corresponding dihalogenated substrates and sequential reaction of the dilithiated intermediates with dichlorosilanes. However, these reactions have some problems, such as the waste of stoichiometric reagents, the tolerance of functional groups, and the difficulty in the synthesis of multi-substituted starting materials. Hence, the efficient and versatile synthetic methods of silacyclic compounds are still desirable.

Recently, Kuninobu and other research groups reported iridium- or rhodium-catalyzed intramolecular C–H silylations for the synthesis of silafluorenes, phenazasilines, and silepins. The intra- and intermolecular sila-Friedel–Crafts reaction is appearing as an efficient tool to construct C–Si bonds. Inspired by the intermolecular sila-Friedel–Crafts reaction of aniline derivatives with hydrosilanes, I envisioned that double sila-Friedel–Crafts reactions between biphenyls/biaryl derivatives/terphenyls and dihydrosilanes are ideal and efficient synthetic methods of highly substituted silacyclic compounds.

In Chapter 1,  $C(sp^2)$ –H silylation for organosilanes and its applications to the synthesis of  $\pi$ conjugated molecules is introduced. Here, I briefly survey the progress of research activities regarding transition metal-catalyzed  $C(sp^2)$ –H silylation and sila-Friedel–Crafts reactions.



Chapter 2 describes the silafluorene synthesis from amino-substituted biphenyls and dihydrosilanes through a borane-catalyzed double sila-Friedel–Crafts reaction. This reaction system is suitable for the synthesis of multisubstituted silafluorenes, spirosilabifluorenes, and

silicon-bridged terphenyl compounds, which are not readily obtained using traditional synthetic methods. Besides, the transformation of the amino groups in those silafluorene derivatives into other substituents was achieved by the cross-coupling reaction between ammonium salts and Grignard reagents.



In Chapter 3, the synthesis of six-membered silacycles, including phenoxasilin and phenothiasilin derivatives is detailed. The borane-catalyzed double sila-Friedel–Crafts reaction of amino group-containing diaryl ethers and dihydrosilanes afforded phenoxasilin derivatives with moderate to excellent yields. Diaryl thioethers was also converted to the corresponding six-membered silacyclic products under the optimal conditions. In addition, the gram-scale synthesis of a selected phenoxasilin and the conversions of amino groups were investigated.

Chapter 4 focuses on the synthesis of seven-membered silacycles, tribenzosilepin derivatives. During the investigation for the synthesis of a silafluorene derivative using a terphenyl substrate, the corresponding tribenzosilepin was obtained in 87% yield. The optimal reaction system was applied to the synthesis of other silepin derivatives with different substituents on the center benzene ring or using other hydrosilane reagents, such as dimethylamino-, difluoro-, naphthalene backbone-containing silepin and 5-silaspiro[4.6]silepin. Besides, a bidirectional reaction forms bissilepin compound. The transformation of the amino groups in tribenzosilepin derivatives to aryl groups and the enlargement of the  $\pi$ -system in tribenzosilepin were realized. The optical properties of some selected tribenzosilepin derivatives were investigated by UV/Vis absorption and photoluminescence spectroscopy.



✓ spiro-silacylcles ✓ conjugation enlargement

#### **Chapter 1**

## Introduction of C(sp<sup>2</sup>)-H Silylation and Its Application

Silicon-containing molecules are of great research interests with extensive applications in several research areas, such as materials science, medicinal chemistry, and complex molecule synthesis. C–Si bond formation by direct C–H functionalization is a modern synthetic approach towards the synthesis of valuable compounds. C–H functionalization offers a high step and atom economy in contrast to conventional procedures using reaction partners, which are prefunctionalized, at least, once. In this chapter, I briefly survey the progress of research activities regarding silylation of C(sp<sup>2</sup>)–H bonds, especially transition metal-catalyzed silylation and sila-Friedel–Crafts reactions.

Traditional C–Si bond formation often relies on prefunctionalized substrates and typically employs organometallic reagents, such as Grignard and organolithium reagents, as nucleophiles and silicon halides or alkoxides as electrophiles (Scheme 1.1a).<sup>[1]</sup> The limitations of this method are multi-steps synthesis of substrates and the incompatibility of Grignard and organolithium reagents with functional groups, such as carboxyl, hydroxyl, sulfhydryl, amine, and amide groups. Meanwhile, considerable amounts of wastes are produced during the prefunctionalization and C–Si bond formation. Besides, the transition metal complex-catalyzed cross-coupling reactions between organohalide reagents and hydrosilanes give organosilanes (Scheme 1.1b).<sup>[2]</sup> Even though it is possible to get rid of the incompatibility of Grignard and organolithium reagents with functional groups, this approach still requires the prefunctionalization, and the regioselectivity of silylation is determined by the halogenation step.

Hence, the direct and regioselective silvlation of C–H bonds for the synthesis of organosilanes is fascinating as it can convert C–H bonds into the corresponding C–Si bonds without requirement of the prefunctionalization of substrates. In 1982, the first example of C–H silvlation (unselective silvlation of neat benzene accompanied by silane redistribution) was reported by Curtis and Epstein.<sup>[3]</sup> Over the years, significant efforts have been made to address

this synthetic challenge (Scheme 1.1c). The resulting strategies can be categorized into four fundamentally different reaction classes: (i) Transition metal-catalyzed C–H silylation, (ii) electrophilic aromatic substitution ( $S_EAr$ ), (iii) nucleophilic substitution, and (iv) homolytic aromatic substitution ( $S_HAr$ ). Here I describe transition metal-catalyzed C–H silylation and sila-Friedel–Crafts reactions, which are related to Chapters 2–4.

**Scheme 1.1.** Methods for the synthesis of organosilicon compounds. (a) Traditional synthesis of organosilanes using prefunctionalized substrates. (b) Transition metal-catalyzed cross-coupling reactions. (c) Synthesis of organosilanes by direct C–H silylation: (i) transition metal-catalyzed C–H silylation, (ii) electrophilic aromatic substitution, (iii) nucleophilic substitution, and (iv) radical aromatic substitution.



#### 1.1 Transition Metal-Catalyzed Silylation of C–H Bonds

During the past few decades, great success has been achieved in the field of direct C–H bond silylation catalyzed by transition metals. Various transition metal compounds, such as iridium, ruthenium, and rhodium complexes, can be used as catalysts for C–H silylation. As introduced in the review by Hartwig,<sup>[4]</sup> examples of transition metal-catalyzed C–H silylation can be divided into three classes: (1) Intramolecular, (2) directed intermolecular, and (3) undirected intermolecular manners (Scheme 1.2).

Scheme 1.2. Transition metal-catalyzed C–H silylation reactions.



#### 1.1.1 Intramolecular C-H Silylation

Kuninobu and co-workers reported a rhodium-catalyzed intramolecular silylation via the cleavage of Si–H and C–H bonds of biphenylhydrosilanes **1** for the synthesis of silafluorene derivatives **2** (Scheme 1.3).<sup>[5]</sup> The reaction proceeds via (1) Si–H bond activation by oxidative addition of a hydrosilane to the metal center (intermediate **3**); (2-1) sequential oxidative addition (intermediate **4**); or (2-2)  $\sigma$ -bond metathesis (intermediate **5**), and (3) formation of silafluorenes **2** from the intermediates (**4** and/or **5**) by reductive elimination.





Sequential C–Si/C–H bond activation of silacyclobutanes **6** under Rh<sup>I</sup> catalysis afforded a series of silafluorenes **9** in high yields and with high regioselectivities.<sup>[6]</sup> The proposed catalytic cycle involves an endocyclic  $\beta$ -hydride elimination of five-membered metallacycles **7** and reductive elimination to give Si–Rh<sup>I</sup> species **8**, which is capable of C–H activation and successive reductive elimination to produce silafluorenes **9** (Scheme 1.4).

Scheme 1.4. Rhodium-catalyzed intramolecular C–H silylation via the cleavage of C–Si bond of silacyclobutanes.



Intramolecular C–H silylation of arenes with hydrosilanes afforded the corresponding silacyclic compounds. This strategy, however, requires tethering a suitable hydrosilyl group to the arene substrates. Silylation of alcohols **10** (Scheme 1.5a),<sup>[7]</sup> amines **13** and **14** (Scheme 1.5b),<sup>[8]</sup> and silanols **17** (Scheme 1.5c),<sup>[9]</sup> or hydrosilylation of carbonyl groups<sup>[7]</sup> achieved by Si–C or Si–heteroatom bond formation, which give silane-tethered arenes **11** and **17** including one free Si–H bond (Scheme 1.5). The following Si–H/C–H dehydrogenative silylation proceeds through a cyclometalated intermediate, furnished the C–Si bond in the products **12**, **15**, **16**, and **18**. Those method can avoid undesirable double silylation.

Regarding the above-reactions, the iridium-catalyzed dehydrogenative dimerization of benzylmethylsilanes **19** via site-selective silvlation of two different types of C–H bonds: selective  $C(sp^3)$ –H bond of the methyl group forms hydrosilane **20** and *ortho*- $C(sp^2)$ –H bond activation of the benzyl group convert **20** into disiline **21** (Scheme 1.5d).<sup>[10]</sup> The  $\alpha$ -effect of the silicon atom is the key to controlling the reactivity and selectivity of C–H bond activation.

# Scheme 1.5. Intramolecular silvlation of aryl C–H bonds in benzyl silvl ethers, amines, and silanols.

(a) Iridium-catalyzed arene ortho-silylation by formal hydroxyl-directed C-H activation



(b) Iridium-catalyzed regioselective silylation of aromatic and benzylic C-H bonds directed by a secondary amine



(c) Iridium-catalyzed intramolecular C-H silylation of siloxane-tethered arene and hydrosilane



(d) Iridium-catalyzed dehydrogenative dimerization of benzylmethylsilanes via silylation of C(sp<sup>3</sup>)-H bonds adjacent to a silicon atom



#### 1.1.2 Intermolecular C-H Silylation

The C–H silylation assisted by a directing group can be faster than undirected reactions and can occur with high regioselectivity. C–H bond activation by the coordination of a directing group of **22** to a metal catalyst forms cyclometalated species **24** (Scheme 1.6). This directed silylation of C–H bonds produce only *ortho*-functionalized products **25** with excellent regioselectivity. When two *ortho*-C–H bonds exist, C–H silylation can occur at both *ortho*-positions. A wide variety of directing groups have been developed for C(sp<sup>2</sup>)–H silylation: that

is, imino,<sup>[11]</sup> amide,<sup>[12]</sup> ester,<sup>[12a,13]</sup> ketone,<sup>[12a]</sup> and amino,<sup>[14]</sup> and even the unusual alkoxy<sup>[15]</sup> groups have been used as directing groups for C–H silylation.



Scheme 1.6. Directing group-assisted intermolecular silvation.

The first directed C–H silvlation of aromatic imines **26** catalyzed by the combination of  $Pt_2(dba)_3$  and  $P(OCH_2)_3CEt$  using the imino group as the directing group and disilanes **27** as the silicon source produced mixtures of mono- and di-silvlated products **28** and **29** (Scheme 1.7).<sup>[11a]</sup>

Scheme 1.7. Imine-directed C-H silylation of arenes.



The ruthenium-catalyzed *ortho*-C–H silylation of arylboronic acids **30** modified to contain 2-pyrazol-5-ylaniline **31** as the directing group.<sup>[16]</sup> The key feature of the directing group is the ease of its installation and removal (Scheme 1.8a). 2-Pyrazol-5-ylaniline **31** can be easily attached to boron atom via condensation with boronic acid **30**. The silylation of the formed product **32** with triethylhydrosilane affords the *o*-silylation product **33**. The detachment of the directing group can be realized by the treatment of the reaction mixture with pinacol and TsOH.

The half-sandwich scandium alkyl complexes catalyzed *ortho*-selective C–H silylation of various alkoxy-substituted aromatic compounds **35** without the requirement of a hydrogen

acceptor to achieve high conversion (Scheme 1.8b).<sup>[15]</sup> This scandium-based *ortho*-selective silylation is mainly due to the oxophilicity of early transition metals. The *ortho*-C–H bond activation of alkoxy compound through assistance of the interaction between the alkoxy group and the Sc atom affording the 2-anisyl complex with release of H<sub>2</sub>. The  $\sigma$ -bond metathesis reaction between the complex and phenylsilane would yield the silylated product **36**. The coordination of the alkoxy group to the metal center could be the rate-determining step of this catalytic process.

An ruthenium(II)-catalyzed intermolecular *ortho*-selective C–H silylation of 2-aryloxazoles **37** was also reported (Scheme 1.8c).<sup>[17]</sup> For Ru(II)–OAc-catalytic C–H bond activation, the use of OAc<sup>-</sup> as the co-catalyst to the Ru center promoted the cleavage of the *ortho*-C–H bond to afford the *o*-silylated oxazoles **38**.







(b) Sc-catalyzed silylation of aryl C-H bonds



(c) Ru(II) catalyzed synthesis of silylated oxazoles via C–H silylation and dehalogenation



Transition metal-catalyzed intermolecular C–H silylation assisted by directing groups is predominant with *ortho*-positions. However, the *meta*-<sup>[18]</sup> and even *para*-<sup>[19]</sup>positions were also disclosed. The designed elongated tether enables cyclometalation at the remote reaction sites. Without directing groups, rhodium-catalyzed intermolecular C–H silylation of unactivated arenes that manifests very high regioselectivity through the steric effects of substituents *meta* to the potential reaction sites (Scheme 1.9a).<sup>[20]</sup> Iridium-catalyzed intermolecular C–H silylation of arenes, which are the limiting substrates, exhibited high regioselectivity controlled by the steric effect (Scheme 1.9b).<sup>[21]</sup> Compared to the rhodium-catalyzed silylation of an aryl C–H bond, the iridium-catalyzed C–H silylation proceeded using a variety of heteroarenes and showed a much broader functional group tolerance. However, the reaction requires higher temperatures than the rhodium-catalyzed C–H silylation, and the regioselectivities of the reactions were low in the case of unsymmetrical 1,2-disubstituted arenes.

Scheme 1.9. Intermolecular C–H silylation of arenes without directing groups.

$$\begin{array}{c} R^{1} \\ R^{2} \\ R^{3} \\ R^{3} \\ H \end{array} \begin{array}{c} H \\ H_{2} \text{ acceptor} \\ H \\ R^{3} \\ H \end{array} \begin{array}{c} R^{1} \\ R^{2} \\ R^{3} \\$$

(a) Rhodium-catalyzed silylation of aryl C-H bonds



The silylation of C(sp<sup>2</sup>) –H bonds adjacent to a heteroatom, such as boron, nitrogen, sulfur, or oxygen atom, were also reported.<sup>[22]</sup> So far great success has been achieved in the silylation of C–H bonds under transition metal catalysis. Various transition metals, such as Ir, Ru, Rh, and Pt, have been used as catalysts for C–H silylation. The reaction efficiency has been greatly improved in terms of the substrate diversity, reaction temperature, reaction time, stoichiometry of arenes and the regioselectivity of the C–H silylation.

#### 1.2 Sila-Friedel–Crafts Reaction

Electrophilic aromatic substitution is an efficient way for silvlation of C–H bonds, which proceeds via the formation of cationic  $\sigma$ -complexes **49** and **50** (Wheland intermediates), which are rearomatized by proton release. Similar with Friedel–Crafts alkylation, the difficulty of this reaction lies in the reversibility (Scheme 1.10).<sup>[23]</sup> In the case of Friedel–Crafts silvlation, the silicenium ion **50** is substantially stabilized by a pronounced  $\beta$ -silicon effect, thereby facilitating proton capture at the *ipso*-position of arylsilanes (Scheme 1.10b).

Scheme 1.10. Reversibility of Friedel–Crafts alkylation and silylation.



#### 1.2.1 Stoichiometric Sila-Friedel–Crafts Reaction

Early sila-Friedel–Crafts reactions were based on the traditional procedures for Friedel– Crafts alkylation. In these reactions, chlorosilanes have been used as the silylation reagents together with strong main-group Lewis acids as promoters (Scheme 1.11a).<sup>[24]</sup> In sila-Friedel– Crafts reactions, proton must be effectively removed from the reaction mixture to suppress the backward reaction and shift the equilibrium to the product side. An apparent solution to solve the problem is the addition of an excess amount of a base. With nucleophilic benzenoids ferrocene **51**, Olah and co-workers accomplished the sila-Friedel–Crafts reaction with AlCl<sub>3</sub> as an activating reagent, but the yields of silylated products **54** were low, and stoichiometric amount of a base was needed to suppress protodesilylation (Scheme 1.11b).<sup>[25]</sup>



Scheme 1.11. Sila-Friedel–Crafts reactions of ferrocene with silicon electrophiles.

By using other electron-rich heteroarenes, such as indoles **55** and pyrroles **57** as nucleophiles, Simchen and Frick achieved sila-Friedel–Crafts reactions with a neutral silicon electrophile (Me<sub>3</sub>SiOTf). The reverse reaction was also avoided by the addition of an excess amount of Et<sub>3</sub>N as the proton-trapping base (Scheme 1.12).<sup>[26]</sup>

Scheme 1.12. Sila-Friedel–Crafts reaction of indoles and pyrroles with a neutral silicon electrophile.



The intramolecular sila-Friedel–Crafts reaction was achieved by Kawashima and coworkers a few decades later. In this reaction, they used biphenyl hydrosilanes **59** as substrates,  $[Ph_3C]^+[B(C_6F_5)_4]^-$  as a hydride abstraction reagent, and 2,6-lutidine as a base, to afford dibenzosiloles **61** in excellent yields (Scheme 1.13).<sup>[27]</sup> They also extended this reaction to an intermolecular reaction with benzene **62** and triphenylsilane, which gave the corresponding tetraphenylsilane **63** in 31% yield.

**Scheme 1.13.** (a) Intramolecular Friedel–Crafts silylation of a dimethyl-substituted hydrosilane; (b) intermolecular rection of benzene with triphenylsilane.



In the above-mentioned sila-Friedel–Crafts reactions, several kinds of bases are used for proton removal from the reaction mixture to suppress the reverse reaction. However, the resulting acid–base adduct might be still too acidic to prevent the product decomposition. Key to success for recent methodologies is the conversion of proton into dihydrogen gas, which irreversibly escapes from the reaction mixture.

#### 1.2.2 Catalytic Sila-Friedel–Crafts Reaction

Tris(pentafluorophenyl)borane (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>) is a convenient and commercially available Lewis acid with a comparable strength to BF<sub>3</sub>, but without the problem associated with reactive B–F bonds.<sup>[28]</sup> B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> activates H–SiR<sub>3</sub> via the formation of a weak adduct **64** (Scheme 1.14a).<sup>[29]</sup> The adduct **64** enhanced the electrophilicity of the silicon atom, promoting the nucleophilic attack of the aromatic substrates. A reaction of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-activated hydrosilanes with heteroarenes **65** by the sila-Friedel–Crafts reaction was achieved firstly by Ingleson's group (Scheme 1.14b).<sup>[30]</sup> In the presence of  $B(C_6F_5)_3$ , the dehydrosilylation of heteroarenes favored by the addition of a weak base, produced H<sub>2</sub> as a byproduct. However, the generation of H<sub>2</sub> from dehydrosilylation also permits the potentially competitive frustrated Lewis pair (FLP) mediated hydrogenation as an additional reaction pathway (Scheme 1.14c). Electrophilic silylation of 5-membered *N*-heterocycles **68** and **69**, such as pyrroles and indoles, in the presence of  $B(C_6F_5)_3/R_3SiH$  occurred at the C3-position in moderate yields. The competing hydrogenation proceeded to give **72** and **73**, with no hydrosilylation was observed in either case.<sup>[31]</sup>



Scheme 1.14. B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-mediated and -catalyzed sila-Friedel–Crafts reaction.

Zhang and coworkers avoided the side hydrosilylation and hydrogenation of indoles in  $S_EAr$  reaction by  $B(C_6F_5)_3$ -catalyzed convergent disproportionation (Scheme 1.14d)<sup>[32]</sup> or by using  $Al(C_6F_5)_3$  as a catalyst.<sup>[33]</sup> In those cases, indolines **75** were continuously converted back to indoles **74**, and the disproportionation reaction afforded C3-silylated indoles **76** and indolines

74 for the next catalytic cycle, and thus, C3-selective silylated products 76 were obtained in up to 99% yield (Scheme 1.15).

**Scheme 1.15.** Possible mechanism for B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-catalyzed disproportionation reaction of indoles.



Hou and coworkers developed intermolecular *para*-selective sila-Friedel–Crafts reactions of N,N-disubstituted anilines **80** with hydrosilanes catalyzed by B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (Scheme 1.16).<sup>[34]</sup> The reaction starts from the activation of hydrosilane by the coordination of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> to the hydridic Si–H bond, which forms an weak adduct **82**. Then, nucleophilic attack of the *para*-carbon atom of an electron-rich N,N-dimethylaniline to the electropositive silicon center of the adduct from the back side produce an ion-pair intermediate **84**. Release of H<sub>2</sub> yielded the silylated product **81** along with regeneration of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>. The formation of H<sub>2</sub> (at 4.67 ppm) was observed by <sup>1</sup>H NMR of the reaction of N,N-dimethylaniline with diphenylsilane in C<sub>6</sub>D<sub>5</sub>Cl.

Scheme 1.16. Boron-catalyzed sila-Friedel–Crafts reaction with hydrosilanes.



Cooperative Si–H bond activation at Lewis acidic metal centers is an entry into catalysis with electrophilic silylation reagents for sila-Friedel–Crafts reaction.<sup>[35]</sup> Ruthenium thiolate complexes **85** (Ohki–Tatsumi complexes), were used for Si–H bonds activation in sila-Friedel–Crafts reactions (Scheme 1.17).<sup>[36-38]</sup> In this case, the Si–H bond is heterolytically split by the Ru–S bond of the coordinatively unsaturated cationic ruthenium(II) complex **85**, forming a sulfur-stabilized silicon electrophile. The Wheland intermediate of the subsequent Friedel–Crafts-type process is assumed to be deprotonated by the sulfur atom without addition of a base.

Scheme 1.17. Cooperative Si-H bond activation.



The very first catalytic cooperative Si–H bond activation for sila-Friedel–Crafts reaction paves the way for C3-selective C–H functionalization of indoles and pyrroles by electronic control (not by conventional steric control) (Scheme 1.18).<sup>[36]</sup> The proposed catalytic cycle includes cooperative Ru–S-catalyzed Si–H bond activation and regioselective sila-Friedel– Crafts reaction of indoles. Initial coordination of the Si–H bond to the vacant ruthenium(II) site merges into the reversible heterolytic Si–H bond cleavage by the polar Ru–S bond. The siliconsubstituted sulfonium ion **89** is then transferred onto nucleophilic indole **87**, yielding Ru–H complex **90** and  $\sigma$ -complex **91**. Proton abstraction from the formed Wheland intermediate was facilitated by the weakly basic sulfur atom to give silylated indole products **88**.

Scheme 1.18. Ruthenium(II) thiolate complex-catalyzed dehydrogenative silylation of



The ruthenium catalyst can be applied to the synthesis of dibenzosiloles functionalized at both benzene cores **93** (Scheme 1.19a). The intramolecular sila-Friedel–Crafts reaction

proceeded via the formation of a sulfur-stabilized silicon cation, generated catalytically from the hydrosilane precursor.<sup>[37]</sup>

In the presence of the ruthenium catalyst, reactions of 2- and 3-substituted pyridines **95** with hydrosilanes also yielded the corresponding 5-silylated pyridines **98** (Scheme 1.19b). This formal silylation of an aromatic C–H bond is the result of a three-step sequence, consisting of (1) a 1,4-selective hydrosilylation of pyridine (dearomatization), (2) a dehydrogenative C–H silylation of the enamine intermediate **96**, and (3) the retro-hydrosilylation of *N*-silylated 1,4-dihydropyridines **97** (rearomatization). The key intermediates, *N*-silylated 1,4-dihydropyridines **96** and 1,5-silylated 1,4-dihydropyridine **97** were detected by <sup>1</sup>H NMR spectroscopy and prepared through the individual steps. The complex interplay of the electrophilic silylation, hydride transfer, and proton abstraction is promoted by a single catalyst.<sup>[38]</sup>

Scheme 1.19. Sila-Friedel–Crafts reaction involving cooperative Si–H bond activation.

(a) Sila-Friedel–Crafts reaction to dibenzosiloles functionalized at both benzene cores



(b) Sila-Friedel-Crafts reaction of pyridines enabled by temporary dearomatization



Oestreich and coworkers found that the Lewis acid, which is generated in situ from base metal salts and NaBAr<sup>F</sup> (Ar<sup>F</sup> = 3,5-bis(trifluoromethyl)phenyl), promoted the sila-Friedel– Crafts reaction of electron-rich arenes **99**, such as *N*,*N*-disubstituted anilines, pyrroles, and indoles, with hydrosilanes (Scheme 1.20). The sila-Friedel–Crafts reaction was optimized for FeCl<sub>2</sub>/NaBAr<sup>F</sup> where the addition of a base is not needed to absorb the released proton.<sup>[39]</sup> Along this reaction, Tsuchimoto achieved Zn-pyridine-nitrile system-catalyzed constructing of N(indolyl)–Si bond in a dehydrogenative fashion.<sup>[40]</sup>

Scheme 1.20. Intermolecular sila-Friedel–Crafts reaction of electron-rich arenes initiated by base metal salts.



Sila-Friedel–Crafts reaction initiated by Brønsted acid-promoted generation of electrophilic silicon cation from hydrosilanes was presented by Oestreich and coworkers.<sup>[41]</sup> Protonation of the hydrosilane followed by elimination of dihydrogen is key to generate the stabilized silylium ion and to remove the proton released from the Wheland intermediate. Brookhart's acid **106** is strong enough to protonate the hydrosilane to give a pentacoordinate siliconium ion **107**. That intermediate release dihydrogen to afford the silylium ion **108** which is stabilized by Et<sub>2</sub>O or toluene. Et<sub>2</sub>O introduced with Brookhart's acid [H(OEt<sub>2</sub>)<sub>2</sub>]<sup>+</sup>[BArF<sub>4</sub>]<sup>-</sup> (**106**) acts as the stabilizing donor, however, toluene solvent will competent this job if ether cleavage occurs in the reaction process. Then nucleophilic attack of the electron rich indole to the cationic silicon electrophile **108** occur affording Wheland complex **109**. The Wheland complex **109** is a strong Brønsted acid to directly protonate another hydrosilane molecule, and then the catalytic cycle closes along with the formation of the C3-silylated indole **102**.

Alkyl substitution at the *ortho*-position to the amino group was tolerated in 1-methyl-1,2,3,4-tetrahydroquinoline **103**. In the case of the pyrrole substrate, the silylated product **104** in moderate yield with regioselectivity (C3:C2 = 87:13). *N*,*N*-Disubstituted aniline gave the desired silylated product **105** in good yield with highly regioselectivity.

Scheme 1.21. Brønsted acid-mediated formation of stabilized silylium ions for catalytic sila-Friedel–Crafts reaction.



#### **1.3 Applications of C(sp<sup>2</sup>)–H Silylation**

Heteroatom-containing  $\pi$ -conjugated systems have been one of the exciting subjects in the last few decades because electronic tuning by main group elements enables  $\pi$ -electron systems to acquire intriguing photophysical and electronic properties. Heteroatom-containing triangulenes, heteroatom-containing ladder-type  $\pi$ -conjugated molecules, heteroatom-porphyrin  $\pi$ -conjugate systems, and trisilasumanene are well-known. Based on the great success of the above-mentioned C(sp<sup>2</sup>)–H silylation, the synthesis of silicon-containing  $\pi$ -conjugated molecules were demonstrated.

Hatakeyama and coworkers have developed a method for the divergent synthesis of siliconcentered 4,8,12-triazatriangulene **112**, with the key step to efficiently incorporate a silicon atom into the macrocyclic precursor **111** through electrophilic substitution of C–Li bond and Friedel– Crafts-type reaction (Scheme 1.22).<sup>[42]</sup> The bowl-shaped structure of the compound was revealed by X-ray crystallography. Spectroscopic characterization of the compound revealed that its UV/Vis spectra showed strong absorption band, which is corresponding to a  $\pi$ - $\pi$ \* transition with maximum wavelength at  $\lambda = 335$  nm, while the fluorescence spectra showed weak emission bands at  $\lambda = 383$  nm ( $\Phi_F = 0.09$ ).

Scheme 1.22. Synthesis of silicon-centered 4,8,12-triazatriangulenes.



Porphyrin is an  $18\pi$  aromatic macrocyclic compound that consists of four pyrrole units and four bridging carbon atoms in a planar conformation. Osuka *et al.* reported the synthesis of triphenylsilane-fused porphyrins by a synthetic protocol consisting of installation of a 2-(diphenylsilyl)phenyl group by Negishi coupling and subsequent intramolecular sila-Friedel– Crafts reaction initiated by a trityl cation and 2,6-lutidine (Scheme 1.23).<sup>[43]</sup> Doubly fused Ni<sup>II</sup>porphyrin **114** showed the first oxidation and reduction potentials at 0.47 and -1.77 V, respectively, leading to a HOMO-LUMO gap of 2.24 eV. The absorption spectra of doubly fused Ni<sup>II</sup>-porphyrin showed peaks ( $\lambda_{max}$ ) at 444 and 555 nm.

Scheme 1.23. Triphenylsilane-fused porphyrins.



Trisilasumanene has attracted much attention as both a sumanene analogue and a novel  $\pi$ extended silole derivative.<sup>[44]</sup> Kawashima *et al.* reported the first synthesis of silasumanene **119**from 2,3,6,7,10,11-hexabutoxytriphenylene (**116**) through bromination followed by repeated
lithiation/silylation/sila-Friedel–Crafts reaction (Scheme 1.24a).<sup>[27a]</sup> X-ray structural analysis
of the trisilasumanene **119** indicated that the main framework was almost planar. UV-vis
absorption spectrum of trisilasumanene **119** showed an intense absorption band ( $\lambda_{max} = 299$  nm),
and a weak absorption band in the longer-wavelength region (>350 nm). The emission spectrum
showed a blue fluorescence in dichloromethane solution ( $\lambda_{max} = 427$  nm) and in the solid state
( $\lambda_{max} = 447$  nm).

Afterward, Xu and coworkers have succeeded in the synthesis of pristine all-methyl substituted silasumanene **122** using a threefold rhodium-catalyzed cyclo-dehydrogenation of Si–H and C–H bonds as the key step.<sup>[45]</sup> This three-step procedure from readily available starting materials **120** provides a shortcut to homogeneous methyl or isobutyl substituted silicon-containing sumanenes without substituents on their peripheral carbons, which are difficult targets through known methods. This work demonstrated the power of the transition metal-catalyzed cyclodehydrogenative reactions for the synthesis of polycyclic aromatic hydrocarbons and their heteroanalogues (Scheme 1.24b).





(b) Three-fold Rh-catalyzed cyclodehydrogenation



#### **1.4 Silacyclic Compounds**

Silicon-containing  $\pi$ -conjugated compounds exhibit characteristic optical and electronic properties due to the particular interactions between Si and the  $\pi$ -system. For example, DFT calculations show that the LUMO level of silafluorene (-0.92 eV) is significantly lower than that of fluorene (-0.74) due to  $\sigma^*-\pi^*$  conjugation (Scheme 1.25).<sup>[46]</sup> As the energy gap of organosilicon compounds between the HOMO and LUMO is tuned, red- or blue-shift emerges in conjugated materials. The addition of silicon atom(s) to aromatic molecules induces hyperconjugation between the  $\sigma$  orbital of the silicon atom(s) and the aromatic  $\pi$  orbital. UVvis absorption and fluorescence spectra are red-shift and the molecule's absorption coefficient and fluorescence intensity increase owing to the  $\sigma$ - $\pi$  conjugation. These effects are evident in dibenzosilole, a five-membered ring molecule that contains silicon.<sup>[47]</sup>

Scheme 1.25. Structures of fluorene and silafluorene and their DFT calculations at B3LYP/6-31G(d) level.



The silacyclic compounds, such as silafluorene derivatives, silicon and heteroatom-bridged six-membered biaryls (phenazasilines, phenoxasilins, and phenothiasilins) and silepin

derivatives (Scheme 1.26), are promising for optoelectronic devices, except for their synthetic difficulties.<sup>[48]</sup>



Scheme 1.26. Structures of silacyclic compounds.

Even though the synthesis of silicon-containing compounds by  $C(sp^2)$ –H silylation has been widely studied, the existing strategies for the synthesis of the above silacyclic compounds are limited to the traditional reaction between dilithiated intermediates with dichlorosilanes (Scheme 1.27a)<sup>[48-53]</sup> or intramolecular silylation from silyl-substituted arenes (Scheme 1.27b).<sup>[5,6,27,30,47,54]</sup>



Scheme 1.27. Current synthetic methods for synthesis of silacycles.

Furthermore, the application of those synthetic methods for construction of  $\pi$ -system are relatively less developed. I assumed that a simple synthesis of silacyclic compounds can be feasible by direct intermolecular C–H silylation, especially sila-Friedel–Crafts raction,

considering the advantages and the disadvantages of transition metal-catalyzed intermolecular  $C(sp^2)$ –H silylation. In the case of the transition metal-catalyzed directed intermolecular  $C(sp^2)$ –H silylation, *ortho*-selective  $C(sp^2)$ –H silylation can be achieved using a directing group but  $C(sp^2)$ –H silylation can occur at both *ortho*-positions if the substrate has two *ortho*-C–H bonds, which will be demerit of the construction of silacycles (Scheme 1.28a). There also have the problems of the attachment and detachment of a suitable directing group.<sup>[4,11a]</sup> In addition, in the transition metal-catalyzed undirected intermolecular silylation, special silylation reagents, such as H<sub>2</sub>Si(OTMS)<sub>2</sub>, are required (Scheme 1.28b).<sup>[20,21]</sup> It is also difficult to control the regioselectivity of the reaction to form the desired silacycles.

Scheme 1.28. Construction of silacycles by transition metal-catalyzed C–H silylation.



In contrast, the reported intramolecular sila-Friedel–Crafts reactions for the synthesis of silafluorene derivatives<sup>[27,30]</sup> and the intermolecular sila-Friedel–Crafts using a hydrosilane reagent<sup>[34]</sup> could avoid the above problems, and silylated products can be obtained regioselectivity without using directing groups.

#### 1.5 Purpose, Importance, and Design of My Researches

The purpose of this research project is the synthesis of five-, six-, and seven-membered silacyclic compounds by a direct synthetic route from biaryls and dihydrosilanes. The synthesis of the silacyclic compounds is important because of their potential applications, such as optoelectronic devices.

Based on the above studies on sila-Friedel–Crafts reactions, the electron-rich arenes or heteroarenes were required as substrates, especially in the intermolecular reactions.<sup>[55]</sup> Concerning about the intermolecular *para*-selective sila-Friedel–Crafts reactions of *N*,*N*-disubstituted anilines with hydrosilanes, I designed the substrates with strong electron-donating groups, such as amino groups, at the *para*-position from the reaction sites.

Tris(pentafluorophenyl)borane B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> is a commercially available, air-stable and watertolerant Lewis acid.<sup>[56]</sup> B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> has a strong Lewis acidity similar to that of BF<sub>3</sub> due to the electron-withdrawing nature of the three pentafluorophenyl rings.<sup>[57]</sup> B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> is less prone to hydrolysis than BF<sub>3</sub>.<sup>[58]</sup> The steric bulkiness of the perfluorinated phenyl rings additionally makes B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> an ideal Lewis acid for frustrated Lewis pair chemistry.<sup>[59]</sup> B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> has often been used in the field of main-group Lewis acid and metal-free catalysis.<sup>[60]</sup> Other Lewis acid catalysts reported in sila-Friedel–Crafts reactions, such as trityl cation ([Ph<sub>3</sub>C]<sup>+</sup>[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]<sup>-</sup>), ruthenium thiolate complexes, base-metals, and Brønsted acid, have some problems: addition of stoichiometric amounts, limited tolerance of hydrosilane reagents, and harsh reaction conditions.

Herein, I designed the  $B(C_6F_5)_3$ -catalyzed double sila-Friedel–Crafts reaction as ideal and efficient synthetic methods of silacyclic compounds (Scheme 1.29).

Scheme 1.29. Boron-catalyzed double sila-Friedel–Crafts reactions for the synthesis of silacyclic compounds.



First of all, I planned to investigate B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-catalyzed double sila-Friedel–Crafts reaction for the synthesis of silafluorene derivatives from amino-substituted biphenyls and dihydrosilanes. I hypothesized that the reaction system could be useful for the direct synthesis of silacycles, especially multisubstituted ones, which are not readily obtained by conventional synthetic routes. In addition, I expected to realize the construction of extended  $\pi$ -conjugated systems based on the introduction of amino groups as transformable directing groups on the silacycles (Scheme 1.30).<sup>[61]</sup>

Scheme 1.30. Design of construction of  $\pi$ -conjugated systems.



### Chapter 2

## Lewis Acid-Catalyzed Synthesis of Silafluorene Derivatives from Biphenyls and Dihydrosilanes via a Double Sila-Friedel–Crafts Reaction

#### **2.1 Introduction**

9-Silafluorene (dibenzosilole), a silole embedded in a biphenyl framework, has recently received much attention due to its great potential applications for organic electroluminescent compounds (123),<sup>[62]</sup> organic light emitting materials (124, 125),<sup>[63]</sup> field effect transistors (126, 127),<sup>[64]</sup> and photovoltaics (Scheme 2.1).<sup>[65]</sup> Hence, several approaches for the construction of the silafluorene structure have been developed.





One of the common synthetic methods is dilithiation of 2,2'-dibromobiphenyls and sequential transmetalation of dilithiated biphenyls **129** with dichlorosilanes (Scheme 2.2).<sup>[49]</sup> Even though the method is practical, several limitations remain: (1) multiple-steps synthesis is necessary; (2)
functional groups which react with organolithium reagents cannot be used; and (3) the synthesis of multi-substituted silafluorene derivatives is not readily achieved due to the difficulty of the preparation of their multi-substituted dibromobiphenyl precursors. Therefore, a direct synthesis of multi-substituted silafluorenes is desirable.

Scheme 2.2. Transformation of organometallic biphenyls with dichlorosilanes.



Transition metal-catalyzed synthetic methods have been developed to synthesize diverse silafluorene derivatives under mild conditions (Scheme 2.3).<sup>[66]</sup> In 2009, Chatani and co-workers reported a rhodium-catalyzed synthesis of benzosilole **132** via the cleavage of a C–Si bond of **131** (Scheme 2.3a).<sup>[66a]</sup> In 2011, Xi's group developed a new process involving palladium-catalyzed selective cleavage of the C(sp<sup>3</sup>)–Si bond in a trialkylsilyl group of **133** and consequent intramolecular C(sp<sup>2</sup>)–Si bond forming process. This reaction provided the first efficient synthesis of benzosilolo[2,3-*b*]indoles **135**, which represent a new type of silicon-bridged polyheteroarene (Scheme 2.3b).<sup>[66b]</sup> In 2008, Hiyama *et al.* described a palladium-catalyzed intramolecular direct arylation of readily available 2-(arylsilyl)aryl triflates **136** as versatile synthetic route to silafluorenes. Key to this success is the installation of bulky substituents on the silicon atom and the use of Et<sub>2</sub>NH as a base (Scheme 2.3c).<sup>[66c]</sup> The effects of the bulkier substituents may be rationalized as the Thorpe–Ingold effect or *gem*-dialkyl effect from these groups positioned the two phenyl groups closer together, and suppressed the decomposition of silafluorene.

Scheme 2.3. Transition metal-catalyzed synthesis of silafluorene derivatives.

(a) Rhodium-catalyzed cyclization reaction of boronic acids via Me-Si bond cleavage



(b) Pd-catalyzed selective cleavage of a C(sp<sup>3</sup>)-Si bond and consequent intramolecular C(sp<sup>2</sup>)-Si coupling reaction



(c) Palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates



The silulation of C–H bonds is an attractive protocol because for the reactions do not require the prefunctionalization of arene substrates.<sup>[4]</sup> Rhodium-catalyzed double activation of Si–H and C–H bonds is an effective strategy for the synthesis of silafluorene derivatives.<sup>[5]</sup> Our group successfully developed the synthesis of silafluorenes from biarylhydrosilanes 1 (Scheme 2.4). The reaction proceeded by double activation of Si–H and C–H bonds via dehydrogenation. The dehydrogenation reaction does not require oxidants, such as molecular oxygen.<sup>[5a]</sup> Our group also realized the synthesis of a spirosilabifluorene derivative from a bis(biphenyl)silane by double dehydrogenative cyclization using the rhodium catalyst. This reaction was applied to the synthesis of chiral spirosilabifluorene derivatives using a rhodium catalyst with a chiral phosphine ligand ([RhCl(cod)]<sub>2</sub> + (*R*)-binap).<sup>[5b]</sup> Several other transition metal-catalyzed synthetic methods to prepare silafluorenes have also been reported.<sup>[67]</sup>

Scheme 2.4. Rhodium-catalyzed direct intramolecular aromatic C–H silylation.



Silyl radical-based strategy for the synthesis of silafluorenes via direct C–H bond cleavage of arylsilanes without the aid of transition metals, acids, or bases were also disclosed (Scheme 2.5).<sup>[68]</sup> A direct and efficient strategy employing aryl silyl radical intermediates **137** towards the synthesis of silafluorenes and silaindenes was introduced by Li and co-workers. These reactions start from readily available arylhydrosilanes **1**, furnish the products **2** via direct Si–H and C–H cleavage pathways in one step (Scheme 2.5a).<sup>[68a]</sup> Leifert and Studer developed a base-promoted homolytic aromatic substitution (BHAS) of 2-diphenylsilylbiaryls **138** for 9-silafluorenes. Cross dehydrogenative silylation occurred with tetrabutylammonium iodide (TBAI) as an initiator, *tert*-butylhydroperoxide (TBHP) as a stoichiometric oxidant (Scheme 2.5b).<sup>[68b]</sup>

# Scheme 2.5. Silyl radical-based strategy for the synthesis of silafluorenes via direct C–H bond cleavage.



(a) Synthesis of silafluorenes via silyl radicals from arylhydrosilanes

(b) 9-Silafluorenes via base-promoted homolytic aromatic substitution



Recently, the intramolecular sila-Friedel–Crafts reaction of biphenylhydrosilanes for the synthesis of silafluorene derivatives has been developed (Scheme 2.6).<sup>[27a,30,37]</sup> Kawashima and co-workers reported an intramolecular sila-Friedel-Crafts reaction for dibenzosilole derivatives (Scheme 2.6a).<sup>[27a]</sup>

Ingleson et al. reported B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> catalyst promoted the dehydrosilylation of 2-(HR<sub>2</sub>Si)biphenyls 65 in the presence of a weak base to form silafluorenes with the generation H<sub>2</sub>. This synthetic system is applicable for the synthesis of silaindenes 141 from alkynes 143 by transhydrosilylation and sequential intramolecular sila-Friedel–Crafts reaction (Scheme 2.6b).<sup>[30]</sup>

Scheme 2.6. Sila-Friedel–Crafts reaction for synthesis of silafluorenes.





(a) Strategy for intramolecular sila-Friedel-Crafts reaction



The above-mentioned synthetic strategies have been limited to the intramolecular silvlation for the synthesis of silafluorene derivatives. Although the intramolecular silvlations produced the silafluorenes in good yields, this strategy requires tethering suitable silyl groups to the arene substrates, which limits the diversity of functional groups. Therefore, I assumed the intermolecular reaction of biphenyl as substrates and dihydrosilanes as silane sources is a promising protocol to provide silafluorene derivatives.

Hou's group reported the boron-catalyzed intermolecular sila-Friedel-Crafts reaction of aromatic amines with various hydrosilanes (Scheme 2.7).<sup>[34]</sup>

Scheme 2.7. Boron-catalyzed aromatic sila-Friedel–Crafts reaction with hydrosilanes.

$$\begin{array}{c} R_{N}^{1} & & \\ N & & \\ R_{2}^{\prime 2} & \mathbf{80} \end{array} H + H - [Si] \xrightarrow{B(C_{6}F_{5})_{3}}{-H_{2}} \xrightarrow{R_{1}^{1}}{N} - (Si] \\ R_{2}^{\prime 2} & \mathbf{81} \end{array}$$

I then considered that it is feasible to synthesize silafluorene derivatives using a double sila-Friedel–Crafts reaction between electron-rich biphenyls and dihydrosilanes. Additionally, there is no example of the synthesis of silafluorenes, despite the report of ruthenium-catalyzed reaction of 2-phenylindoles and dihydrosilanes through successive sila-Friedel–Crafts reaction.<sup>[69]</sup> Herein, I report a borane-catalyzed sila-Friedel–Crafts reaction between amino groups-substituted biphenyls **144** and dihydrosilanes **145** for the synthesis of silafluorene derivatives **146** (Scheme 2.8).<sup>[70]</sup>





# 2.2 Results and Discussion

First, I started the feasibility studies of my synthetic approach using diaminobiphenyl **144a** and dihydrodiphenylsilane **145a** as model substrates (Table 2.1). Biphenyl **144a** was synthesized by palladium-catalyzed amination of 3,3'-dibromobiphenyl with HNEt<sub>2</sub> (Scheme 2.9).<sup>[71]</sup>

Scheme 2.9. Synthesis of biphenyl 144a.



The double sila-Friedel–Crafts reaction of **144a** with **145a** using a catalytic amount of  $B(C_6F_5)_3$  in chlorobenzene as a solvent at 100 °C for 24 h provided silafluorene **146a** in 73% yield (Table 2.1, entry 1). The result can be rationalized as that the electron-rich nature or that the tertiary amine itself may act as a base during the reaction, in a stepwise deprotonation/hydrogen release mechanism.<sup>[72]</sup>

Due to the reversibility of sila-Friedel–Crafts reaction, the presence of a base is necessary to prevent the reverse protonation reaction of Wheland complex from occurring. Kawashima investigated the effectiveness of different bases in the sila-Frieded–Crafts reaction, no bases other than 2,6-lutidine worked well.<sup>[27a,30]</sup> They rationalized that the bulkiness and basicity of 2,6-lutidine were important factors in this reaction. Based on the above-mentioned results, pyridines were examined as an additive (entries 2–4). When using pyridine as an additive, no reaction proceeded due to the deactivation of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> by the coordination of pyridine (entry 2). The yield of **146a** reached 89% using 5.0 mol% of 2,6-dichlroropyridine (entry 3). In the presence of 7.5 mol% of 2,6-lutidine, **146a** was afforded in 93% yield (87% isolated yield, entry 5). The structure of the silafluorene **146a** was confirmed by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy and HRMS spectrometry.

Table 2.1. Synthesis of silafluorene derivative 146a from diaminobiphenyl 144a and<br/>dihydrodiphenylsilane 145a.

| Et <sub>2</sub> | <u>n</u> N                                                        | Et <sub>2</sub>                                                                                                   |                                                                  |
|-----------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                 | 144a<br>+<br>H <sub>2</sub> SiPh <sub>2</sub><br>145a (3.0 equiv) | B(C <sub>6</sub> F <sub>5</sub> ) <sub>3</sub> (5.0 mol%)<br>additive (5.0 mol%)<br>chlorobenzene<br>100 °C, 24 h | Et <sub>2</sub> N NEt <sub>2</sub><br>Si<br>Ph'Ph<br><b>146a</b> |
|                 | entry                                                             | additive                                                                                                          | yield (%) <sup>b</sup>                                           |
|                 | 1                                                                 | none                                                                                                              | 73                                                               |
|                 | 2                                                                 | pyridine                                                                                                          | 0                                                                |
|                 | 3                                                                 | 2,6-dichloropyridine                                                                                              | 80                                                               |
|                 | 4                                                                 | 2,6-lutidine                                                                                                      | 89                                                               |
|                 | 5                                                                 | 2,6-lutidine <sup>a</sup>                                                                                         | 93 (87) <sup>c</sup>                                             |

<sup>a</sup>7.5 mol%. <sup>b</sup>Deremined by <sup>1</sup>H NMR. <sup>c</sup>Isolated yield.



Compound **144b** was synthesized by an iron-catalyzed homo-coupling of 3-(*N*,*N*-dimethylamino)phenyl magnesium bromide (Scheme 2.10a).<sup>[73]</sup> Biphenyls **144c–144g** were synthesized by Pd/BINAP-catalyzed amination of dibromobiphenyl (Scheme 2.10b).<sup>[74]</sup> Biphenyls **144h–144n** were synthesized by the Suzuki-Miyaura cross-coupling reaction of functionalized anilines with arylboronic acids (Scheme 2.10c).<sup>[75]</sup> The details of the reaction conditions and spectral data were shown in the experimental section.



Scheme 2.10. Synthesis of biphenyls (a) 144a, (b) 144c–144g, and (c) 144h–l.

The substrate scope of biaryls was then investigated under the optimized reaction conditions (Scheme 2.11). Silafluorene derivatives **146b–d** containing dimethylamino groups or cyclic N,N-dialkylamino groups, pyrrolidine and piperidine were obtained in 81–95% yields from the corresponding biphenyls **144b–d**. N-n-butyl-N-methylamino group-substituted biphenyl **144e** afforded silafluorene **146e** in 43% yield. By increasing the reaction temperature to 140 °C, the yield of **146e** was increased to 82%. Silafluorene **146f** was formed in 78% yield using N-benzyl-N-methylamino group-substituted biphenyl **144f**, while N-p-tolyl-N-methylamino group-substituted biphenyl **144g** gave silafluorene **146g** in 34% yield. It is probably because nucleophilicity of aromatic rings is decreased by the introduction of p-tolyl groups on amino groups. In addition, there is also the steric effect of the tolyl groups compared with other substituents of the amino groups. The conventional synthetic methods of multi-substituted silafluorene derivatives are not easily applied for preparing their multi-substituted substrates. In contrast, the readily prepared trisubstituted biphenyls **144h–k** were transformed to the silafluorene **146f** was afforded in 42% yield. The yield was improved to 52% at 140 °C. Mono-

aminobiphenyls **144m** and **144n** are also good substrates to afford their corresponding silafluorenes **146m** and **146n** in 40% and 53% yields, respectively. The naphthyl substituted substrate **144n** selectively gave silafluorene **146n** without the formation of **146n'**, probably due to the electronic effect on the naphthalene moiety and the steric hindrance between the hydrogen atom at the *peri*-position of the naphthalene moiety and phenyl groups on the silicon atom in the intramolecular silylation step.



Reaction conditions: biphenyls (0.25 mmol), hydrosilane (0.75 mmol),  $B(C_6F_5)_3$  (5.0 mol%), 2,6-lutidine (7.5 mol%) in chlorobenzene (0.5 mL) under N<sub>2</sub> at 100 °C for 24 h. <sup>a</sup>lsolated yield. <sup>b</sup>140 °C.

In contrast to **144**, no desired compound was obtained in the case of tetrasubstituted biphenyl **1440**, and the substrate was completely recovered under the aforementioned reaction conditions. It is probably due to the steric hindrance of *ortho*-methyl group during the first nucleophilic attack step, that is, the silylated intermediate does not form (Scheme 2.12a).

This catalytic system was not able to facilitate the sila-Friedel–Crafts reaction of biphenyl **144p** containing methoxy groups instead of amino groups (Scheme 2.12b).<sup>[76a]</sup> After the reaction, the substrate did not remain and a byproduct was obtained. The reaction detail and the structure of the byproduct were discussed in the experimental section.

When one of the amino groups was replaced with a methylthio group, the reaction between **144q** and **145a** afforded a mixture of silylated products **146q** and **146q'** in 92% yield (ratio = 2.5:1) under the optimal reaction conditions (Scheme 2.12c). These results revealed that the amino groups are essential for regioselective synthesis of silafluorene derivatives by the double sila-Friedel–crafts reaction.



Scheme 2.12. Substrate scope of 1460, 146p and 146p.

Subsequently, the scope of dihydrosilanes **145** was investigated (Scheme 2.13). Diaryldihydrosilanes bearing electron-donating or -withdrawing groups gave silafluorene derivatives **146r**, **146s**, and **146t** in 73%, 87%, and 91% yields, respectively, without loss of the halogen atoms. Silafluorene **146u** was obtained using di(2-naphthyl)silane **145e** in high yield. Phenylmethylsilane and diethyldihydrosilane were also transformed into silafluorene derivatives **146v** and **146w** in high yields.



Scheme 2.13. Substrate scope of dihydrosilanes 145.<sup>a</sup>

<sup>a</sup>isolated yield. <sup>b</sup>140 °C.

Spirosilabifluorenes are attractive scaffolds for organic optoelectronic materials.<sup>[5b,67a]</sup> The introduction of a "spiro" linkage into organic compounds contributes to many advantageous properties, such as high thermal stabilities, facile processability, and high luminescence quantum efficiencies.<sup>[77]</sup> It is notable that a spirosilabifluorene derivative **148** was synthesized from biphenyl **144d** and 9,9-dihydro-5-silafluorene **147** in 42% yield (Scheme 2.14).

Scheme 2.14. Synthesis of spirosilabifluorene derivative 148.



Silicon-bridged terphenyl compounds have attracted much attention due to their optoelectronic properties. Although silicon-bridged *para*-terphenyl compounds are well

known,<sup>[5a,55a,27a,78]</sup> examples of the synthesis of silicon-bridged *meta*-terphenyl compounds are quite rare.<sup>[79]</sup> Hence, I investigated the synthesis of a silicon-bridged *meta*-terphenyl compound using the synthetic condition. A quadruple sila-Friedel–Crafts reaction of *meta*-terphenyl derivative **149** with diphenylsilane **145a** afforded silicon-bridged *meta*-terphenyl compound **150** in only 9% yield (Scheme 2.15). After the reaction, the signals at 5.5 ppm and 5.6 ppm were observed in the <sup>1</sup>H NMR of the crude products, which could be assigned as hydrogens of hydrosilyl groups of a mixture of intermediates **150–i1** and **150–i2** (Scheme 2.15). This result indicates that the intramolecular sila-Friedel–Crafts reaction on the central benzene ring did not proceed effectively. Therefore, after the intermolecular borane-catalyzed sila-Friedel–Crafts reaction, a successive rhodium-catalyzed intramolecular C–H silylation<sup>[8]</sup> was carried out. As a result, the yield of **150** was improved to 28%.



Scheme 2.15. Synthesis of silicon-bridged terphenyl molecule 150.

To demonstrate the practicability of this protocol, a gram-scale synthesis of silafluorene **146b** was performed (Scheme 2.16). Treatment of 1.00 g of biphenyl **144b** with 2.33 g of dihydrodiphenylsilane **145a** in the presence of catalytic amounts of  $B(C_6F_5)_3$  and 2,6-lutidine in chlorobenzene afforded 1.68 g of silafluorene **146b** in 96% yield, which are comparable to the yield in the smaller scale (0.250 mmol) reaction of **144b** with **145a** (87%).





The dimethylamino (Me<sub>2</sub>N) group is the most versatile functional group capable of highly efficient and site-selective directed aromatic functionalizations.<sup>[61]</sup> The amino groups on the silafluorene derivatives can be converted into other functional groups (Scheme 2.17).<sup>[80]</sup> Initially, the amino groups in **146b** were converted into their ammonium salts upon treatment with MeOTf and gave **151** in 97% yield. The activated compound **151** was then treated with a Grignard reagent PhMgBr in the presence of a palladium catalyst PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> to give the cross-coupling product **152** in 96% yield. Other Grignard reagents including 4-(MeO)C<sub>6</sub>H<sub>4</sub>MgBr, 4-FC<sub>6</sub>H<sub>4</sub>MgBr and (CH<sub>2</sub>=CH–CH<sub>2</sub>)MgBr also gave the corresponding silafluorenes **153–155** in moderate to good yields.





A possible catalytic pathway for the above palladium catalyzed cross coupling of aryltrimethylammonium triflates with aryl Grignard reagents was shown in Scheme 2.18. First of all, Pd(II) (**156**) was converted to Pd(0) (**157**) by reductive elimination with Grignard reagent. The resulting electron-rich Pd(0) catalyst **157** inserts into the ArNMe<sub>3</sub>+OTf<sup>-</sup> to form an oxidative addition species L<sub>2</sub>Pd(OTf)Ar (**158**) and release NMe<sub>3</sub>. Subsequent transmetalation with the Grignard reagent forms a hetero-organometallic intermediate **159**. Finally, reductive elimination of **159** forms a carbon–carbon bond and along with regeneration of the Pd(0) complex (**157**).

Scheme 2.18. Proposed mechanism for the palladium-catalyzed cross-coupling of aromatic ammonium salts with Grignard reagents



Organoboron compounds are one of the most diverse classes of reagents in organic synthesis, providing access to a mass of valuable and essential transformations.<sup>[81]</sup> Therefore, nickelcatalyzed borylation of ammonium salt **151** was conducted. The reaction gave biphenyl **144b** (56%) and silafluorene **146b** (18%) instead of organo-boronates **160** as products (Scheme 2.19).<sup>[82]</sup>



The common reductive deamination is carried out by catalytic hydrogenation with H<sub>2</sub> under transition metal catalysis. Nickel-catalyzed C–N bond reduction of aromatic ammonium triflate **151** using sodium isopropoxide as a reducing agent gave only desilylated product **144b** in 80% yield (Scheme 2.20).<sup>[83]</sup>



Scheme 2.20. Attempt of nickel-catalyzed C–N bond reduction.

A possible reaction pathway for the boron-catalyzed double sila-Friedel–Crafts reaction is proposed in Scheme 2.21 on the basis of previous studies of Si–H bond activation.<sup>[30,34]</sup> The reaction start from the activation of dihydrosilane by  $B(C_6F_5)_3$  through a B…H interaction to form the weak adduct **162**. Nucleophilic attack of the *para*-carbon of the electron rich *N*,*N*dimethylaniline at the electropositive silicon center in **162** from the back side generates ionpair intermediate **163**. Re-aromatization of **163** along with the release of H<sub>2</sub> is promoted by the abstraction of proton by hydroborate or a base. Nucleophilic attack of the other electron rich N,N-dimethylaniline at the electropositive silicon center in **164** generates ion-pair intermediate **165**. Release of one more molar of H<sub>2</sub> from **165** give desired silafluorene **146**. The formation of H<sub>2</sub> (at 4.49 ppm) was observed by <sup>1</sup>H NMR of the reaction of biphenyl **144b** with dihydrodiphenylsilane **145a** in toluene- $d_8$  (see experimental section).

**Scheme 2.21.** Possible mechanism for boron-catalyzed synthesis of silafluorene derivatives from biphenyls and dihydrosilanes via a double sila-Friedel–Crafts reaction.



# 2.3 Conclusion

In conclusion, I developed the new synthetic method of silafluorene derivatives from diamino-substituted biaryls and dihydrosilanes via a borane catalyzed double sila-Friedel– Crafts reaction. This reaction is the first example of direct synthesis of silafluorenes from biaryls and dihydrosilanes. The silafluorene derivatives were formed in moderate to excellent yields, even on gram-scale. The synthesis of multi-substituted silafluorene derivatives from readily prepared biphenyl was also achieved. Spirosilabifluorenes and silicon-bridged terphenyl derivatives can be provided using the reaction system. Additionally, the transformation of the amino groups in the silafluorene derivatives into other substituents was demonstrated. This result will lead to the synthesis of silicon-containing  $\pi$ -conjugated molecules with large  $\pi$ -conjugated systems. I hope that the reported reaction will be useful and effective for the synthesis of various silafluorene derivatives.

# 2.4 Experimental Section

# 2.4.1 General

All reactions were carried out using standard Schlenk techniques under an inert atmosphere. All reagents were purchased from commercial sources and used without further purification unless otherwise noted. Silica gel column chromatography was carried using Silica gel 60 (Kanto Chemical, particle size:  $40-50 \,\mu$ m or  $63-210 \,\mu$ m). NMR spectra were recorded on JEOL JNM-ECA600 (600 MHz for <sup>1</sup>H NMR, 150 MHz for <sup>13</sup>C NMR), JEOL ECZ-400 (400 MHz for <sup>1</sup>H NMR, 100 MHz for <sup>13</sup>C NMR), JEOL JNM-LA400 (400 MHz for <sup>1</sup>H NMR, 100 MHz for <sup>13</sup>C NMR) spectrometers. Proton and carbon chemical shifts are reported relative to tetramethylsilane (TMS,  $\delta$  0.00 (<sup>1</sup>H NMR, <sup>13</sup>C NMR)) or the residual solvent (CDCl<sub>3</sub> ( $\delta$  7.26 for <sup>1</sup>H NMR or  $\delta$  77.16 for <sup>13</sup>C NMR), CH<sub>2</sub>Cl<sub>2</sub> ( $\delta$  5.32 for <sup>1</sup>H NMR or  $\delta$  53.84 for <sup>13</sup>C NMR), DMSO-*d*<sub>6</sub> ( $\delta$  2.49 for <sup>1</sup>H NMR or  $\delta$  39.60 for <sup>13</sup>C NMR)) used as an internal reference. HRMS were measured on a JEOL JMS-700 spectrometer. UV/vis absorption and photoluminescence (PL) spectra were measured with a V650 spectrophotometer (JASCO), and C9920-02 (Hamamatsu Photonics).

(3-(Dimethylamino)phenyl)boronic acid,<sup>[84]</sup> di-*p*-tolylsilane,<sup>[85a]</sup> bis(4-fluorophenyl)silane,<sup>[85a]</sup> bis(4-bromophenyl)silane,<sup>[85a]</sup> di(naphthalen-2-yl)silane<sup>[85a]</sup>, 9,9-dihydro-5-silafluorene,<sup>[85b,c]</sup> 1,2-dibromo-4,5-diiodobenzene,<sup>[86]</sup> Turbo Grignard reagents,<sup>[87]</sup> 1-(hexyloxy)-3-iodobenzene,<sup>[88]</sup> 3,4-dibromoaniline,<sup>[89]</sup> 3,4-dibromo-*N*,*N*-dimethylaniline<sup>[90]</sup> were prepared according to the literature procedures or modified procedures.

# 2.4.2 Synthesis and Characterization of Substrates

# **Biphenyl 144a**

Et<sub>2</sub>N

Compound **144a** was synthesized according to the reported method.<sup>[71]</sup> Schlenk flask was charged with 3,3'-dibromobiphenyl (1.87 g, 6.00 mmol, 1.0 equiv), HNEt<sub>2</sub> (878 mg, 12.0 mmol, 2.0 equiv), NaO'Bu (1.73

g, 18.0 mmol, 3.0 equiv), Pd(dba)<sub>2</sub> (138 mg, 0.240 mmol, 4.0 mol%), P'Bu<sub>3</sub> (39.2 mg, 0.190 mmol, 3.2 mol%), and toluene (12 mL) under N<sub>2</sub>. The flask was immersed in an oil bath and heated to 130 °C with stirring overnight. The mixture was cooled to room temperature, filtered over Celite, and concentrated. The crude product was then purified by column chromatography (eluent: ethyl acetate) on silica gel to give **144a** as yellow solid (1.78 g, quant). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.26 (dd, J = 8.0, 8.0 Hz, 2H), 6.86–6.83 (m, 4H), 6.67 (dd, J = 8.1, 2.3 Hz, 2H), 3.40 (q, J = 7.0 Hz, 8H), 1.19 (t, J = 7.0 Hz, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.0, 144.0, 129.5, 114.9, 111.2, 110.6, 44.6, 12.8; HRMS(EI<sup>+</sup>) Calcd for C<sub>20</sub>H<sub>28</sub>N<sub>2</sub> ([M]<sup>+</sup>) 296.2247, Found 296.2253.

# 3-Bromo-N,N-dimethylaniline (S1)

NEt<sub>2</sub>



Compound S1 was synthesized according to the reported method.<sup>[90]</sup> A mixture of aniline (10 mmol), iodomethane (22 mmol) and  $K_2CO_3$  (22 mmol) in DMF (30 mL) was refluxed at 75 °C. After completion of the reaction monitored by

TLC, the mixture was poured into aqueous NaHCO<sub>3</sub> solution and extracted with ethyl acetate. The organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuo. Purification by column chromatography on silica gel afford *N*,*N*-dimethylanilines (1.80 g, 90%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.08 (dd, *J* = 8.0, 8.0 Hz, 1H), 6.84–6.81 (m, 2H), 6.64–6.61 (m, 1H), 2.94 (s, 6H). The analytical data is in accordance with the previous report.<sup>[91]</sup>

## Compound S2<sup>[92]</sup>

Me<sub>2</sub>N MgBr To an oven dried 25 mL two-necked round bottom flask equipped with a magnetic stir bar and a constant-pressure dropping funnel, activated magnesium turnings (460 mg, 18.9 mmol, 1.05 equiv) was added. The equipment was sealed with rubber septum, then heated with a heat gun under high vacuum for 5 minutes, evacuated, and back filled with nitrogen. After cooling to room temperature, to the funnel was added 1 M solution of 3-bromide-*N*,*N*-dimethylaniline (3.60 g, 18 mmol, 1.0 equiv) in THF (18 mL) by a syringe. The above solution was added dropwise at room temperature within 30 min. when 1mL of the solution was added, 10 drops of 1,2-dibromoethane was added by a syringe to initiate the reaction. Upon addition, the flask was immersed in a preheated 50 °C oil-bath for 2 h. The prepared 3-(*N*,*N*-dimethylamino)phenyl magnesium bromide solution (1.0 M in THF) was stored in nitrogen atmosphere and used in the next step.

## **Biphenyl 144b**

 $Me_2N$   $NMe_2$ and 1 2-dichloroethane Compound **144b** was synthesized according to the reported method.<sup>[73]</sup> A dried two-necked flask equipped with a magnetic stirrer was charged under nitrogen with a solution of FeCl<sub>3</sub> (29 mg, 0.18 mmol, 3.0 mol%)

and 1,2-dichloroethane (356 mg, 3.6 mmol, 0.60 equiv) in 15 mL of THF. A solution of the 3-(*N*,*N*-dimethylamino)phenyl magnesium bromide **S2** in THF (1.0 M, 6 mmol) was added via a syringe. The color immediately changed to dark brown and the temperature increased. The resulting mixture was stirred at room temperature for 1 h then quenched with H<sub>2</sub>O (10 mL). After extraction with CH<sub>2</sub>Cl<sub>2</sub> (3 × 30 mL), the combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give **144b** as yellowish oil (1.12 g, 78%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (dd, *J* = 8.0, 8.0 Hz, 2H), 6.96– 6.94 (m, 4H) 6.76–6.73 (m, 2H), 3.00 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.0, 143.5, 129.4, 116.3, 112.1, 111.7, 40.9; HRMS(EI<sup>+</sup>) Calcd for C<sub>16</sub>H<sub>20</sub>N<sub>2</sub> ([M]<sup>+</sup>) 240.1621, Found 240.1622. The analytical data is in accordance with the previous report.<sup>[93]</sup>

# **Biphenyl 144c**



Compound **144c** was synthesized according to the reported method.<sup>[74]</sup> A Schlenk flask was charged with 3,3'-dibromobiphenyl (624 mg, 2.00 mmol, 1.0 equiv), pyrrolidine (427 mg, 6.00 mmol, 3.0 equiv), NaO'Bu (577 mg, 6.00 mmol, 3.0 equiv), Pd(dba)<sub>2</sub> (46.0 mg, 0.08 mmol, 4.0 mol%), BINAP (149 mg, 0.240 mmol, 12 mol%), and toluene (4.0 mL)

under N<sub>2</sub>. The flask was immersed in an oil bath and heated to 80 °C with stirring overnight.

The mixture was cooled to room temperature, filtered over Celite, and concentrated. The crude product was then purified by column chromatography (eluent: ethyl acetate) on silica gel to give **144c** as yellowish solid (601 mg, quant). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 (dd, J = 7.6, 8.4 Hz 2H), 6.90 (d, J = 7.3 Hz, 2H), 6.79 (s, 2H), 6.57 (d, J = 8.2 Hz, 2H), 3.35 (t, J = 6.4 Hz, 8H), 2.04–2.01 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.3, 143.7, 129.4, 115.1, 111.0, 110.7, 47.9, 25.6; HRMS(EI<sup>+</sup>) Calcd for C<sub>20</sub>H<sub>24</sub>N<sub>2</sub> ([M]<sup>+</sup>) 292.1934, Found 292.1938.

# **Biphenyl 144d**



The same method as **144c**. 3,3'-dibromobiphenyl (624 mg, 2.00 mmol, 1.0 equiv), piperidine (427 mg, 6.00 mmol, 3.0 equiv), NaO'Bu (577 mg, 6.00 mmol, 3.0 equiv), Pd(dba)<sub>2</sub> (46.0 mg, 0.0800 mmol, 4.0 mol%), BINAP (149 mg, 0.240 mmol, 12 mol%), and toluene (4.0 mL). **144d** was obtained as yellow solid (682 mg, quant). <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 (dd, J = 8.0, 8.0 Hz, 2H), 7.13 (t, J = 2.0 Hz, 2H), 7.03 (dd, J = 6.4, 1.4 Hz, 2H), 6.92 (dd, J = 8.1, 2.0 Hz, 2H), 3.21 (t, J = 5.7 Hz, 8H), 1.74 (quint, 5.7 Hz, 8H), 1.60 (quint, J = 5.7 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.7, 143.1, 129.3, 118.7, 116.0, 115.5, 51.0, 26.1, 24.5; HRMS(EI<sup>+</sup>) Calcd for C<sub>22</sub>H<sub>28</sub>N<sub>2</sub> ([M]<sup>+</sup>) 320.2247, Found 320.2251.

### **Biphenyl 144e**



The same method as **144c**. 3,3'-dibromobiphenyl (624 mg, 2.00 mmol, 1.0 equiv), *N*-methylbutan-1-amine (419 mg, 4.80 mmol, 2.4 equiv), NaO'Bu (577 mg, 6.00 mmol, 3.0 equiv), Pd(dba)<sub>2</sub> (46.0 mg, 0.0800 mmol, 4.0 mol%), BINAP (149 mg, 0.240 mmol, 12 mol%),

and toluene (4.0 mL). The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 10:1) on silica gel to give **144e** as yellow solid (289 mg, 46%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (dd, J = 8.0, 8.0 Hz, 2H), 6.89–6.87 (m, 4H), 6.68 (dd, J = 8.5, 2.5 Hz, 2H), 3.35 (t, J = 7.5 Hz, 4H), 2.97 (s, 6H), 1.61–1.55 (m, 4H), 1.36 (q, J = 7.5 Hz, 4H), 0.94 (t, J = 7.3 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.7, 143.7, 129.4, 115.4, 111.5, 111.0, 52.8, 38.6, 29.1, 20.6, 14.2; HRMS(EI<sup>+</sup>) Calcd for C<sub>22</sub>H<sub>32</sub>N<sub>2</sub> ([M]<sup>+</sup>) 324.2560, Found 324.2564.

### **Biphenyl 144f**



The same method as **144c**. 3,3'-dibromobiphenyl (624 mg, 2.00 mmol, 1.0 equiv), *N*-metylbenzylamine (582 mg, 4.80 mmol, 2.4 equiv), NaO'Bu (577 mg, 6.00 mmol, 3.0 equiv), Pd(dba)<sub>2</sub> (46.0 mg, 0.0800 mmol, 4.0 mol%), BINAP (149 mg, 0.240 mmol, 12 mol%), and

toluene (4.0 mL). The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 19:1) on silica gel (pretreated with 1% NEt<sub>3</sub> in hexane) to give **144f** as yellowish oil (740 mg, 94%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36–7.27 (m, 4H), 7.27–7.15 (m, 8H), 6.91–6.89 (m, 4H), 6.74–6.71 (m, 2H), 4.55 (s, 4H), 3.04 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.0, 143.4, 139.1, 129.4, 128.6, 126.9, 126.9, 116.0, 111.7, 111.4, 56.9, 38.7; HRMS(EI<sup>+</sup>) Calcd for C<sub>20</sub>H<sub>28</sub>N<sub>2</sub> ([M]<sup>+</sup>) 392.2247, Found 392.2251.

# **Biphenyl 144g**



The same method as 144c. 3,3'-dibromobiphenyl (624 mg, 2.00 mmol 1.0 equiv), *N*-methyl-*p*-toluidine (582 mg, 4.80 mmol, 2.4 equiv), NaO'Bu (577 mg, 6.00 mmol, 3.0 equiv), Pd(dba)<sub>2</sub> (46.0 mg, 0.0800 mmol, 4.0 mol%), BINAP (149 mg, 0.240 mmol, 12 mol%), and toluene (4.0 mL). The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel

(pretreated with 1% NEt<sub>3</sub> in hexane) to give **144g** as a white solid (665 mg, 85%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36–7.27 (m, 4H), 7.27–7.15 (m, 8H), 6.90 (d, *J* = 6.8 Hz 2H), 6.89 (d, *J* = 2.0 Hz 2H), 6.72 (dd, *J* = 6.8, 2.0 Hz, 2H), 4.55 (s, 4H), 3.04 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.0, 143.4, 139.1, 129.4, 128.6, 126.93, 126.87, 116.0, 111.7, 111.4, 56.9, 38.7; HRMS(EI<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>28</sub>N<sub>2</sub> ([M]<sup>+</sup>) 392.2247, Found 392.2252.

## 5-Bromo-*N*,*N*,2-trimethylaniline (S3)

NMe<sub>2</sub>

Me<sub>2</sub>N Me<sub>2</sub>N Me To a solution of 5-bromo-2-methylaniline (1.12 g, 6.00 mmol, 1.0 equiv) in dry DMF (30 mL) were added MeI (4.26 g, 30.0 mmol, 5.0 equiv) and NaH (720 mg, 18.0 mmol, 3.0 equiv; 60 wt% in mineral oil). After 1 h, the reaction was quenched with water (5 mL). Brine (25 mL) and Et<sub>2</sub>O (25 mL) were added. The organic layer was separated, washed with brine (2 × 25 mL), dried over anhydrous MgSO4, filtered and concentrated. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give 5-bromo-*N*,*N*,2-trimethylaniline as colorless oil (964 mg, 75%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.11 (d, *J* = 1.8 Hz, 1H), 7.06 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 2.68 (s, 6H), 2.26 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.2, 132.5, 130.9, 125.3, 121.8, 119.7, 44.1, 18.2; HRMS(EI<sup>+</sup>) Calcd for C<sub>9</sub>H<sub>12</sub>BrN ([M]<sup>+</sup>) 213.0148, Found 213.0152.

#### **Biphenyl 144h**

Me<sub>2</sub>N

Me

A mixture of (3-(dimethylamino)phenyl)boronic acid (330 mg, 2.00 mmol, 1.0 equiv), 5-bromo-*N*,*N*,2-trimethylaniline (428 mg, 2.00 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (424 mg, 4.00 mmol, 2.0 equiv) and

Pd(PPh<sub>3</sub>)<sub>4</sub> (57.8 mg, 0.0500 mmol, 2.5 mol%) in a mixture of toluene (25 mL), water (4 mL) and ethanol (8 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate 20:1) on silica gel to give **144h** (208 mg, 60%) as colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (dd, *J* = 8.0, 8.0 Hz, 1H), 7.25–7.19 (m, 3H), 6.93 (d, *J* = 7.8 Hz, 2H), 6.75–6.73 (m, 1H), 3.00 (s, 6H), 2.77 (s, 6H), 2.38 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.0, 151.1, 142.8, 140.9, 131.5, 131.1, 129.4, 121.6, 117.7, 116.0, 111.8, 111.6, 44.4, 40.9, 18.3; HRMS(EI<sup>+</sup>) Calcd for C<sub>17</sub>H<sub>22</sub>N<sub>2</sub> ([M]<sup>+</sup>) 254.1778, Found 254.1783.

#### 5-Bromo-2-chloro-N,N-dimethylaniline (S4)

The same method as 5-bromo-*N*,*N*,2-trimethylaniline. Me<sub>2</sub>N 5-Bromo-2chloroaniline (1.03 g, 5.00 mmol, 1.0 equiv), MeI (1.55 mL, 25.0 mmol, 5.0 CI Br equiv) and NaH (600 mg, 15.0 mmol, 3.0 equiv; 60 wt% in mineral oil) were used. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give the desired compound as colorless oil (1.022 g, 87%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.19 (d, J = 8.2 Hz, 1H), 7.15 (d, J = 2.3 Hz, 1H), 7.05 (dd, J = 8.2, 2.3 Hz, 1H), 2.81 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.7, 131.9, 127.1, 126.0, 123.4, 120.9, 43.7; HRMS(EI<sup>+</sup>) Calcd for C<sub>8</sub>H<sub>9</sub>BrClN ([M]<sup>+</sup>) 232.9601, Found 232.9609.

#### **Biphenyl 144i**

The same method 144h. А mixture of (3-NMe<sub>2</sub> as Me<sub>2</sub>N (dimethylamino)phenyl)boronic acid (248 mg, 1.50 mmol, 1.0 equiv), Cŀ 5-bromo-2-chloro-N,N-dimethylaniline (352 mg, 1.50 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (318 mg, 3.00 mmol, 2.0 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (43.3 mg, 0.0375 mmol, 2.5 mol%) in a mixture of toluene (20 mL), water (2 mL) and ethanol (4 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc ( $3 \times 30$  mL). The combined organic phase was dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 15:1) on silica gel to give 144i (323 mg, 78%) as colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (d, J = 8.2 Hz, 1H), 7.31 (dd, J = 7.8, 8.4 Hz, 1H), 7.27 (s, 1H), 7.16 (dd, J = 8.0, 2.1 Hz, 1H), 6.91–6.86 (m, 2H), 6.76 (dd, J = 8.2, 1.8 Hz, 1H), 3.01 (s, 6H), 2.87 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.1, 150.5, 142.0, 141.8, 130.9, 129.6, 127.3, 122.2, 119.2, 115.8, 112.0, 111.5, 44.0, 40.8; HRMS(EI<sup>+</sup>) Calcd for C<sub>16</sub>H<sub>19</sub>ClN<sub>2</sub> ([M]<sup>+</sup>) 274.1231, Found 274.1236.

## 5-Bromo-2-fluoro-*N*,*N*-dimethylaniline (S5)

The same method as 5-bromo-*N*,*N*,2-trimethylaniline. 5-Bromo-2-Me<sub>2</sub>N fluoroaniline (1.52 g, 8.00 mmol, 1.0 equiv), MeI (5.68 g, 40.0 mmol, 5.0 equiv) Br and NaH (960 mg, 24.0 mmol, 3.0 equiv; 60 wt% in mineral oil) were used. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give the desired compound as colorless oil (1.30 g, 74%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.98–6.84 (m, 3H), 2.84 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.0 ( $J_{C-F}$  = 243.4 Hz), 142.1 ( $J_{C-F} = 9.6$  Hz), 123.2 ( $J_{C-F} = 7.7$  Hz), 121.1 ( $J_{C-F} = 2.9$  Hz), 117.5 ( $J_{C-F} =$ 22.0 Hz), 116.8, 42.6 ( $J_{C-F}$  = 4.8 Hz); HRMS(EI<sup>+</sup>) Calcd for C<sub>8</sub>H<sub>9</sub>BrFN ([M]<sup>+</sup>) 216.9897, Found 216.9903.

## **Biphenyl 144j**



The same method as **144h**. A mixture of (3-(dimethylamino)phenyl)boronic acid (330 mg, 2.00 mmol, 1.0 equiv), 5-bromo-2-fluoro-*N*,*N*-dimethylaniline (436 mg, 2.00 mmol, 1.0

equiv), Na<sub>2</sub>CO<sub>3</sub> (424 mg, 4.00 mmol, 2.0 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (57.8 mg, 0.0500 mmol, 2.5 mol%) in a mixture of toluene (25 mL), water (4 mL) and ethanol (8 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 10:1) on silica gel to give **144j** (421 mg, 81%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (dd, *J* = 7.8, 8.4 Hz, 1H), 7.11–7.05 (m, 3H), 6.90–6.86 (m, 2H), 6.74 (dd, *J* = 8.2, 2.7 Hz, 1H), 3.01 (s, 6H), 2.90 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.9 (*J*<sub>C-F</sub> = 244.4 Hz), 151.0, 142.2, 140.8 (*J*<sub>C-F</sub> = 9.6 Hz), 138.90, 138.87, 129.5, 120.1 (*J*<sub>C-F</sub> = 6.7 Hz), 117.7, 116.3 (*J*<sub>C-F</sub> = 22.0 Hz), 116.0, 111.7, 43.0, 40.9; HRMS(EI<sup>+</sup>) Calcd for C<sub>16</sub>H<sub>19</sub>FN<sub>2</sub> ([M]<sup>+</sup>) 258.1527, Found 258.1531.

# 3-Bromo-N,N,5-trimethylaniline (S6)

method 5-bromo-*N*,*N*,2-trimethylaniline. The same as 3-Bromo-5-Me<sub>2</sub>N methylaniline (1.12 g, 6.00 mmol, 1.0 equiv), K<sub>2</sub>CO<sub>3</sub> (7.50 g, 54.0 mmol, 9.0 Br equiv), MeI (4.26 g, 30.0 mmol, 5.0 equiv) and DMF (15 mL). The crude Mé product was then purified by column chromatography (eluent: hexane/ethyl acetate = 10:1) on silica gel to give the desired compound as a colorless oil (1.00 g, 78%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.67–6.65 (m, 2H), 6.43 (s, 1H), 2.92 (s, 6H), 2.27 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 151.7, 140.5, 123.3, 120.2, 112.6, 111.9, 40.6, 21.8; HRMS(EI<sup>+</sup>) Calcd for C<sub>9</sub>H<sub>12</sub>BrN ([M]<sup>+</sup>) 213.0148, Found 213.0154.

# **Biphenyl 144k**



The same method as **144h**. A mixture of (3-(dimethylamino)phenyl)boronic acid (330 mg, 2.00 mmol, 1.0 equiv), 3-bromo-N,N,5-trimethylaniline (428 mg, 2.00 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (424 mg, 4.00 mmol, 2.0 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (57.8 mg,

0.0500 mmol, 2.5 mol%) in a mixture of toluene (25 mL), water (4 mL) and ethanol (8 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 25:1) on silica gel to give **144k** (399 mg, 78%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 (dd, *J* = 8.0, 8.0 Hz, 1H), 6.95–6.93 (m, 2H), 6.78–6.73 (m, 3H), 6.57 (s, 1H), 3.00 (s, 6H), 2.99 (s, 6H), 2.39 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.1, 151.0, 143.6, 143.5, 139.0, 129.3, 117.4, 116.3, 112.6, 112.1, 111.7, 109.5, 41.0, 40.9, 22.1; HRMS(EI<sup>+</sup>) Calcd for C<sub>17</sub>H<sub>22</sub>N<sub>2</sub> ([M]<sup>+</sup>) 254.1778, Found 254.1779.

#### **Biphenyl 1441**



The same method as **144h**. A mixture of (3-(dimethylamino)-5methylphenyl)boronic acid (269 mg, 1.50 mmol, 1.0 equiv), 3-bromo-N,N,5-trimethylaniline (321 mg, 1.50 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (318 mg, 3.00 mmol, 2.0 equiv) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (26.3 mg, 0.0380 mmol,

2.5 mol%) in a mixture of toluene (15 mL), water (2 mL) and ethanol (4 mL) was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phase was dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 30:1) on silica gel to give **144l** (295 mg, 73%) as white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.77–6.75 (m, 4H), 6.56 (s, 2H), 2.98 (s, 12H), 2.38 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.1, 143.6, 138.9, 117.4, 112.5, 109.6, 41.0, 22.1; HRMS(EI<sup>+</sup>) Calcd for C<sub>18</sub>H<sub>24</sub>N<sub>2</sub> ([M]<sup>+</sup>) 268.1934, Found 268.1939.

# **Biphenyl 144m**



A mixture of 3-(*N*,*N*-dimethylamino)phenylboronic acid (330 mg, 2.00 mmol, 1.0 equiv), *p*-bromotoluene (342 mg, 2.00 mmol, 1.0 equiv), K<sub>2</sub>CO<sub>3</sub> (829 mg, 6.00 mmol, 3.0 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (57.8

mg, 0.0500 mmol, 2.5 mol%) in a mixture of water (1.4 mL) and dimethoxyethane (0.7 mL) was heated to 80 °C under nitrogen overnight. After cooled to room temperature, the mixture was diluted with water and EtOAc. The aqueous layer was extracted with EtOAc ( $3 \times 30$  mL). The combined organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was dissolved in ethanol. Water was added and the mixture was evaporated to dryness. The crude product was then purified by column chromatography (eluent: hexane/ethyl acetate = 10:1) on silica gel (pretreated with 1% NEt<sub>3</sub> in hexane) to give **144m** (419 mg, 99%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (dt, *J* = 8.3, 1.9 Hz, 2H), 7.31 (t, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 8.3 Hz, 2H), 6.97–6.89 (m, 2H), 6.74 (dd, *J* = 8.1, 2.7 Hz, 1H), 3.01 (s, 6H), 2.40 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.0, 142.3, 139.5, 137.0, 129.5, 127.3, 115.8, 111.6, 111.5, 40.9, 21.3; HRMS(MALDI<sup>+</sup>) Calcd for C<sub>15</sub>H<sub>17</sub>N ([M]<sup>+</sup>) 211.1356, Found 211.1362.

## **Biphenyl 144n**

Et<sub>2</sub>N The same method as **144m**. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, J = 0.7 Hz, 1H), 7.91–7.85 (m, 3H), 7.75 (dd, J = 8.2, 1.8 Hz, 1H), 7.52– 7.45 (m, 2H), 7.33 (t, J = 8.0 Hz, 1H), 6.99–6.98 (m, 2H), 6.74–6.71 (m, 1H), 3.44 (q, J = 7.0 Hz, 4H), 1.23 (t, J = 6.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.3, 142.5, 140.0, 135.7, 133.7, 132.7, 129.8, 128.3, 128.0, 127.7, 126.2, 126.1, 125.9, 125.8, 115.0, 111.1, 44.6, 12.8; HRMS(EI<sup>+</sup>) Calcd for C<sub>20</sub>H<sub>21</sub>N ([M]<sup>+</sup>) 275.1669, Found 275.1676.

## *N*<sup>3</sup>,*N*<sup>3</sup>,*N*<sup>3</sup>'',*N*<sup>3''</sup>-Tetramethyl-[1,1':3',1''-terphenyl]-3,3''-diamine 149



The same method as **144h**. A mixture of (3-(dimethylamino)phenyl)boronic acid (545 mg, 3.30 mmol, 2.2 equiv), 1,3-dibromobenzene (354 mg, 1.50 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (795 mg, 7.50 mmol, 5.0 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (87.0 mg, 0.0750 mmol, 5.0 mol%) in a mixture of toluene (15 mL), water (2 mL) and ethanol (4 mL) was

heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer is extracted with EtOAc (3 × 30 mL). The combined organic phases are dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give **149** (354 mg, 75%) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (t, *J* = 1.6 Hz, 1H), 7.58–7.55 (m, 2H), 7.48 (dd, *J* = 8.6, 7.0 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.01–6.97 (m, 4H), 6.77 (dd, *J* = 8.2, 2.3 Hz, 2H), 3.01 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.1, 142.8, 142.5, 129.6, 129.0, 126.7, 126.3, 116.1, 111.9, 40.9 (one carbon is missing); HRMS(EI<sup>+</sup>) Calcd for C<sub>22</sub>H<sub>24</sub>N<sub>2</sub> ([M]<sup>+</sup>) 316.1934, Found 316.1940.

# 2.4.3 General Procedure for Boron-catalyzed Double Sila-Friedel–Crafts Reaction<sup>[34]</sup>

To a test tube with a screw cap equipped with a magnetic stir bar was charged biphenyl **144a** (74.1 mg, 0.250 mmol, 1.0 equiv) and tris(pentafluorophenyl)borane (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, 6.4 mg, 0.013 mmol, 5.0 mol%). The test tube was evacuated and filled with nitrogen. Chlorobenzene (0.50 mL) was added via syringe. Diphenylsilane **145a** (0.14 mL, 138 mg, 0.750 mmol, 3.0 equiv) and 2,6-lutidine (2.2  $\mu$ L, 2.0 mg, 0.019 mmol, 7.5 mol%) were then added to the mixture. The test tube was closed with a cap. The reaction mixture was stirred at 100 °C (oil bath) for 24 h. After completion of the reaction, the mixture was cooled to room temperature. The resulting mixture was subjected to <sup>1</sup>H NMR spectroscopy. The crude NMR yields were calculated on the basis of 1,1,2,2-tetrachloroethane (26.4  $\mu$ L, 42.0 mg, 0.25 mmol, 1.0 equiv). The desired silafluorene **146a** was obtained by column chromatography (eluent: hexane/ethyl acetate = 15:1) on silica gel in 87% isolated yield.

#### Silafluorene 146a



**146a** was obtained as white solid (104.1 mg, 87%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 7.3 Hz, 4H), 7.57 (d, J = 8.2 Hz, 2H), 7.38–7.28 (m, 6H), 7.16 (s, 2H), 6.64 (d, J = 8.2 Hz, 2H), 3.45 (q, J = 7.1 Hz, 8H), 1.22 (t, J = 7.1 Hz, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.8, 149.9,

135.6, 135.3, 134.8, 129.5, 127.9, 121.4, 111.5, 104.3, 44.6, 12.8; HRMS(EI<sup>+</sup>) Calcd for  $C_{32}H_{36}N_2Si$  ([M]<sup>+</sup>) 476.2642, Found 476.2647.

#### Silafluorene 146b



**146b** was obtained as white solid (1.68 g, 96%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (dd, J = 8.0, 1.6 Hz, 4H), 7.62 (d, J = 8.1 Hz, 2H), 7.43–7.28 (m, 6H), 7.26 (d, J = 2.4 Hz, 2H), 6.71 (dd, J = 8.1, 2.4 Hz, 2H), 3.08 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.6, 150.5,

135.6, 134.9, 134.6, 129.6, 127.9, 122.7, 112.2, 105.0, 40.7; HRMS(EI<sup>+</sup>) Calcd for  $C_{28}H_{28}N_2Si$  ([M]<sup>+</sup>) 420.2016, Found 420.2024.

#### Silafluorene 146c



**146c** was obtained as white solid (106.9 mg, 90%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (dd, J = 7.8, 1.4 Hz, 4H), 7.58 (d, J = 7.8 Hz, 2H), 7.40–7.23 (m, 6H), 7.07 (d, J = 2.3 Hz, 2H), 6.54 (dd, J = 7.8, 2.3 Hz, 2H), 3.42 (t, J = 6.6 Hz, 8H), 2.02 (quint, J = 6.6 Hz, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.7, 150.0, 135.7, 134.6, 129.5, 127.9,

121.7, 112.0, 111.7, 104.5, 47.8, 25.6; HRMS(EI<sup>+</sup>) Calcd for  $C_{32}H_{32}N_2Si$  ([M]<sup>+</sup>) 472.2329, Found 472.2337.

## Silafluorene 146d



**146d** was obtained as white solid (101 mg, 81%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (dd, J = 6.4, 1.6 Hz, 4H), 7.64 (d, J = 7.8 Hz, 2H), 7.45 (d, J = 1.8 Hz, 2H), 7.43–7.28 (m, 6H), 6.90 (dd, J = 8.0, 2.1 Hz, 2H), 3.30 (t, J = 5.5 Hz, 8H), 1.79 (quin, J = 5.5 Hz, 8H), 1.63 (quin, J = 5.5 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.5,

150.4, 135.6, 134.6, 134.5, 129.7, 128.0, 125.7, 115.8, 109.2, 50.5, 26.0, 24.5; HRMS(EI<sup>+</sup>) Calcd for  $C_{34}H_{36}N_2Si$  ([M]<sup>+</sup>) 500.2642, Found 500.2649.

#### Silafluorene 146e



146e was obtained as white solid (105 mg, 82%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66–7.64 (m, 4H), 7.58 (d, J = 8.2 Hz, 2H), 7.36–7.29 (m, 6H), 7.20 (d, J = 1.8 Hz, 2H), 6.66 (dd, J = 8.0, 2.1 Hz, 2H), 3.42 (t, J = 7.5 Hz, 4H), 3.05 (s, 6H), 1.63 (q, J =

7.5 Hz, 4H), 1.40 (q, J = 7.5 Hz, 4H), 0.99 (t, J = 7.3 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.4, 150.7, 135.6, 135.2, 134.6, 129.5, 127.9, 121.8, 111.7, 104.5, 52.6, 38.6, 29.1, 20.5, 14.2; HRMS (EI<sup>+</sup>) Calcd for C<sub>34</sub>H<sub>40</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 504.2955, Found 504.2959.

## Silafluorene 146f



**146f** was obtained as white solid (111 mg, 78%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (dd, J = 7.8, 1.4 Hz, 4H), 7.57 (d, J = 8.2 Hz, 2H), 7.37–7.23 (m, 16H), 7.15 (d, J = 2.5 Hz, 2H), 6.69 (dd, J = 7.8, 2.3 Hz, 2H), 4.59 (s, 4H), 3.11 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.9, 150.5, 139.2, 135.6, 135.0, 134.7, 129.6, 128.8, 127.9, 127.1,

126.9, 122.8, 112.2, 105.1, 56.9, 38.9; HRMS(FAB<sup>+</sup>) Calcd for C<sub>40</sub>H<sub>36</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 572.2642, Found 572.2649.

# Silafluorene 146g



**146g** was obtained as white solid (48.6 mg, 34%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67–7.65 (m, 4H), 7.57 (d, J = 7.8 Hz, 2H), 7.38–7.30 (m, 8H), 7.13 (d, J = 8.2 Hz, 4H), 7.05 (dd, J = 6.4, 1.8 Hz, 4H), 6.81 (dd, J = 8.0, 2.1 Hz, 2H), 3.35 (s, 6H), 2.34 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  151.6, 150.3, 146.2, 135.6, 134.5, 134.3, 132.8, 130.0, 129.8, 128.0, 126.0, 123.4, 117.3, 110.0, 40.4, 20.9; HRMS(EI<sup>+</sup>) Calcd for C<sub>40</sub>H<sub>36</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 572.2642, Found

572.2648.

#### Silafluorene 146h



General procedure using  $N^3, N^3, N^3', N^3', 4$ -pentamethyl-[1,1'biphenyl]-3,3'-diamine (63.6 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 100 °C for 24 h. The desired compound **146h** was obtained as white powder (91.0 mg, 84%). <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>)  $\delta$  7.66–7.64 (m, 4H), 7.60 (d, J = 8.2 Hz, 1H), 7.51 (d, J = 3.7 Hz, 2H), 7.37–7.29 (m, 6H), 7.20 (d, J = 1.8 Hz, 1H), 6.68 (dd, J = 7.8, 2.3 Hz, 1H), 3.08 (s, 6H), 2.80 (s, 6H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  155.1, 152.7, 150.6, 148.1, 136.5, 135.6, 134.7, 134.5, 131.4, 130.2, 129.7, 128.0, 121.5, 111.9, 110.8, 104.8, 44.1, 40.6, 18.8; HRMS (EI<sup>+</sup>) Calcd for C<sub>29</sub>H<sub>30</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 434.2173, Found 434.2179.

#### Silafluorene 146i



General procedure using 4-fluoro- $N^3$ ,  $N^3$ ,  $N^{3'}$ ,  $N^{3'}$ -tetramethyl-[1,1'biphenyl]-3,3'-diamine (64.6 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 100 °C for 24 h. The desired compound **146i** was obtained as white powder (104 mg, 95%). <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.65–7.62 (m, 4H), 7.60 (d, J = 7.8 Hz, 1H), 7.39–7.31 (m, 8H), 7.14 (d, J = 2.3 Hz, 1H), 6.68 (dd, J = 8.2, 2.3 Hz, 1H), 3.08 (s, 6H), 2.96 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  155.3 ( $J_{C-F}$  = 247.6 Hz), 152.8, 149.8, 145.7 ( $J_{C-F}$  = 1.9 Hz), 142.6 ( $J_{C-F}$  = 9.6 Hz), 135.6, 134.8, 133.9, 129.9, 129.1 ( $J_{C-F}$  = 5.8 Hz), 128.1, 121.4, 120.7 ( $J_{C-F}$  = 20.2 Hz), 111.8, 110.9 ( $J_{C-F}$  = 2.9 Hz), 104.9, 42.9 ( $J_{C-F}$  = 3.8 Hz), 40.6; HRMS (EI<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>27</sub>FN<sub>2</sub>Si ([M]<sup>+</sup>) 438.1922, Found 438.1929.

#### Silafluorene 146j



General procedure using 4-chloro- $N^3$ , $N^3$ , $N^3'$ , $N^{3'}$ -tetramethyl-[1,1'biphenyl]-3,3'-diamine (68.7 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 100 °C for 24 h. The desired compound **146j** was obtained as a white powder (111 mg, 97%). <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>) δ 7.67–7.61 (m, 6H), 7.54 (s, 1H), 7.40–7.32 (m, 6H), 7.17 (d, *J* = 2.3 Hz, 1H),

6.72 (dd, J = 8.2, 2.3 Hz, 1H), 3.09 (s, 6H), 2.93 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.8, 152.4, 149.5, 148.9, 135.6, 135.5, 134.9, 133.6, 131.9, 130.0, 128.1, 127.8, 121.3, 112.6, 112.4, 105.0, 43.9, 40.6; HRMS (EI<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>27</sub>ClN<sub>2</sub>Si ([M]<sup>+</sup>) 454.1627, Found 454.1630.

#### Silafluorene 146k



General procedure using  $N^3, N^3, N^3', N^3', 5$ -pentamethyl-[1,1'biphenyl]-3,3'-diamine (63.6 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 100 °C for 24 h. The desired compound **146k** was obtained as a white powder (96 mg, 88%). <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>)  $\delta$  7.67–7.65 (m, 4H), 7.50 (d, J = 7.8 Hz, 1H), 7.39–7.29 (m, 6H), 7.23 (d, J = 2.3 Hz, 1H), 7.12 (d, J = 1.8 Hz, 1H), 6.67 (dd, J = 8.0, 2.5 Hz, 1H), 6.49 (d, J = 1.6 Hz, 1H), 3.07 (s, 6H), 3.06 (s, 6H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.3, 152.6, 150.8, 150.6, 144.7, 136.0, 134.4, 129.6, 128.0, 123.3, 122.5, 112.9, 112.3, 105.2, 102.9, 40.7, 24.0 (one carbon is missing); HRMS (EI<sup>+</sup>) Calcd for C<sub>29</sub>H<sub>30</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 434.2173, Found 434.2181.

# Silafluorene 1461



General procedure using  $N^3, N^3, N^3', N^3', 5, 5'$ -hexamethyl-[1,1'biphenyl]-3,3'-diamine (67.1 mg, 0.25 mmol) and diphenylsilane (138 mg, 0.75 mmol) at 100 °C for 24 h. The desired compound **146**I was obtained as a white powder (58.4 mg, 52%). <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 6.4 Hz, 4H), 7.37–7.30 (m, 6H), 7.11 (d, J = 1.8 Hz, 2H), 6.46 (d, J = 1.6 Hz, 2H), 3.05 (s, 12H), 2.24 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.2, 150.9, 144.6, 136.2, 133.6, 129.6, 127.9, 122.8, 112.9, 103.0, 40.8, 23.7; HRMS (EI<sup>+</sup>) Calcd for C<sub>30</sub>H<sub>32</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 448.2329, Found 448.2333.

## Silafluorene 146m



**146m** was obtained as white solid (39 mg, 40%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 7.8 Hz, 1H), 7.67–7.61 (m, 5H), 7.56 (s, 1H), 7.41–7.31 (m, 6H), 7.27–7.23 (m, 2H), 6.69 (dd, J = 7.8, 2.3 Hz, 1H), 3.07 (s, 6H), 2.37 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.8, 150.4,

146.6, 137.6, 137.3, 135.6, 134.9, 134.5, 134.1, 131.2, 129.9, 128.1, 120.8, 111.9, 105.0, 40.6, 21.5 (one carbon is missing); HRMS(EI<sup>+</sup>) Calcd for  $C_{27}H_{25}NSi$  ([M]<sup>+</sup>) 391.1751, Found 391.1753.

#### Silafluorene 146n



General procedure using *N*,*N*-diethyl-3-(naphthalen-2-yl)aniline (68.9 mg, 0.250 mmol) and diphenylsilane (138 mg, 0.750 mmol) at 140 °C. The desired compound **146n** was obtained as white powder (60.4 mg, 53%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, *J* = 8.2 Hz, 1H), 8.02 (d,

J = 8.9 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 7.6 Hz, 4H), 7.62 (d, J = 7.6 Hz, 1H), 7.39–7.42 (m, 4H), 7.36 (d, J = 6.9 Hz, 4H), 6.68 (d, J = 8.2 Hz, 1H), 3.49 (q, J = 6.0 Hz, 4H), 1.27 (t, J = 6.0 Hz, 6H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  150.5, 150.1,

148.8, 137.0, 136.0, 135.5, 134.9, 133.8, 133.3, 131.3, 129.9, 129.6, 128.8, 128.2, 126.8, 125.5, 120.1, 119.9, 111.3, 104.9, 44.5, 12.9; HRMS (FAB<sup>+</sup>) Calcd for  $C_{32}H_{29}NSi$  ([M]<sup>+</sup>) 455.2064, Found 455.2068.

#### Silafluorene 146r



General procedure using *N*,*N*,*N*',*N*'-tetramethyl-1,1'-biphenyl-3,3'diamine **144b** (60.1 mg, 0.250 mmol) and di-*p*-tolylsilane (159 mg, 0.750 mmol) at 140 °C. The desired compound **146r** was obtained as yellowish powder (81.9 mg, 73%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 7.8 Hz, 4H), 7.25 (d, *J* = 1.2 Hz, 2H), 7.15 (d, *J* = 5.2 Hz, 4H), 6.70 (dd, *J* = 4.8, 1.2 Hz, 2H), 3.08 (s, 12H),

2.34 (s, 6H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  152.5, 150.5, 139.5, 135.7, 134.5, 131.3, 128.8, 123.3, 112.3, 105.1, 40.8, 21.7; HRMS (FAB<sup>+</sup>) Calcd for C<sub>30</sub>H<sub>32</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 448.2329, Found 448.2334.

# Silafluorene 146s



General procedure using *N*,*N*,*N'*,*N'*-tetramethyl-1,1'-biphenyl-3,3'diamine **144b** (60.1 mg, 0.250 mmol) and di-*p*-fluorophenylsilane (165 mg, 0.750 mmol) at 140 °C. The desired compound **146s** was obtained as a yellowish white powder (99.3 mg, 87%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69–7.58 (m, 6H), 7.30 (d, *J* = 2.2 Hz, 2H), 7.04 (dd, *J* = 8.4, 8.2 Hz, 4H), 6.72 (dd, *J* = 8.2, 2.2, 2H), 3.09 (s, 12H); <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.3 ( $J_{C-F}$  = 247 Hz), 152.7, 150.5, 137.5 ( $J_{C-F}$  = 6.8 Hz), 134.4, 130.2 ( $J_{C-F}$  = 3.9 Hz), 122.0, 115.2 ( $J_{C-F}$  = 20.2 Hz), 112.2, 105.0, 40.6; HRMS (FAB<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>26</sub>F<sub>2</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 456.1828, Found 456.1834.

#### Silafluorene 146t



General procedure using *N*,*N*,*N'*,*N'*-tetramethyl-1,1'-biphenyl-3,3'diamine **144b** (60.1 mg, 0.250 mmol) and di-*p*-bromophenylsilane (257 mg, 0.750 mmol) at 140 °C. The desired compound **146t** was obtained as white powder (131 mg, 91%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, *J* = 8.2 Hz, 2H), 7.52–7.47 (m, 8H), 7.26 (d, *J* = 2.4 Hz, 2H), 6.72 (dd, *J* = 8.2, 2.4 Hz, 2H), 3.10 (s, 12H); <sup>13</sup>C NMR (150

MHz, CDCl<sub>3</sub>) δ 152.8, 150.6, 137.1, 134.4, 133.4, 131.2, 124.8, 121.2, 112.2, 105.0, 40.6; HRMS (FAB<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>26</sub>Br<sub>2</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 576.0227, Found 576.0233.

#### Silafluorene 146u



General Procedure using *N*,*N*,*N'*,*N'*-tetramethyl-1,1'-biphenyl-3,3'diamine **144b** (60.1 mg, 0.250 mmol) and di(naphthalen-2-yl)silane (213 mg, 0.750 mmol) with higher temperature at 140 °C. The desired compound **146u** was obtained as a colorless crystal (105 mg, 81%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (s, 2H), 7.81–7.71 (m, 10H), 7.49–7.41 (m, 4H), 7.29 (d, J = 2.3 Hz, 2H), 6.74 (dd, J = 8.2, 2.3 Hz, 2H), 3.09 (s, 12H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) δ 152.7, 150.7, 136.7, 134.7, 134.2, 133.1, 132.4, 131.6, 128.4, 127.8, 127.2, 126.6, 125.9, 122.6, 112.3, 105.1, 40.7; HRMS (FAB<sup>+</sup>) Calcd for C<sub>36</sub>H<sub>32</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 520.2329, Found 520.2336.

#### Silafluorene 146v



#### Silafluorene 146w



146w was obtained as white solid (71.7 mg, 80%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (dd, J = 7.5, 1.6 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.32–7.26 (m, 3H), 7.23 (d, J = 2.3 Hz, 2H), 6.69 (dd, J = 8.2, 2.3 Hz, 2H), 3.07 (s, 12H), 0.67 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.5, 150.2, 137.0, 134.6, 134.0, 129.4, 127.9, 124.4, 112.2, 105.0, 40.8, -4.3; HRMS (EI<sup>+</sup>)

Calcd for C<sub>23</sub>H<sub>26</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 358.1860, Found 358.1863.

#### Spirosilabifluorene 148



The spirosilabifluorene 148 was synthesized according to the general procedure using 3,3'-di(piperidin-1-yl)-1,1'-biphenyl 144d (60.1 mg, 0.250 mmol) and 5H-dibenzo[b,d]silole (137 mg, 0.750 mmol) at 100 °C. The desired compound 148 was obtained as white solid (52.0 mg, 42%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 7.8 Hz, 2H), 7.47–7.39 (m, 6H), 7.25–7.16 (m, 4H), 6.76 (dd, *J* = 8.0,

2.1 Hz, 2H), 3.30 (t, J = 5.5 Hz, 8H), 1.77–1.56 (m, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.8, 151.6, 149.8, 134.9, 134.5, 134.4, 130.9, 127.7, 121.7, 120.8, 115.6, 108.8, 50.3, 26.0, 24.5; HRMS(EI<sup>+</sup>) Calcd for C<sub>34</sub>H<sub>34</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 498.2486, Found 498.2489.

## Silicon-bridged terphenyl compound 150



The silicon-bridged terphenyl compound 150 was synthesized according to general procedure using N<sup>3</sup>, N<sup>3</sup>, N<sup>3"</sup>, N<sup>3"</sup>. tetramethyl-[1,1':3',1"-terphenyl]-3,3"-diamine (79.0 mg, 0.250 mmol) and diphenylsilane (276 mg, 1.50 mmol, 6 equiv) at 100 °C. After 24 h, the reaction mixture was cooled to room

temperature then 1.0 mol% of RhCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> was added. The reaction mixture was heated to 140 °C, stirred for 24 h. The silicon-bridged terphenyl compound 150 was obtained as white solid (47.0 mg, 28%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.30 (s, 1H), 8.15 (s, 1H), 7.68–7.64 (m, 10H), 7.42–7.29 (m, 14H), 6.76 (dd, J = 8.2, 2.3 Hz, 2H), 3.12 (s, 12H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.9, 151.8, 150.3, 139.3, 136.8, 135.8, 134.9, 134.1, 129.9, 128.1, 122.0, 113.2, 112.7, 105.5, 40.76; HRMS(EI<sup>+</sup>) Calcd for C<sub>46</sub>H<sub>40</sub>N<sub>2</sub>Si<sub>2</sub> ([M]<sup>+</sup>) 676.2725, Found 676.2733.



Figure 2.1. Crude <sup>1</sup>H NMR of the reaction between 149 and 145a.

# Silafluorene 151



To a dry round bottom flask equipped with a magnetic stir bar was charged **146b** (1.09 g, 2.60 mmol, 1.0 equiv) and  $CH_2Cl_2$  (17 mL). To the resultant stirring solution was added dropwise MeOTf (939 mg, 5.70 mmol, 2.2 equiv) at room temperature. The solution was stirred at room temperature for 2 h. The reaction mixture was

concentrated to remove CH<sub>2</sub>Cl<sub>2</sub> and the residue was treated with Et<sub>2</sub>O (20 mL). The resultant solid was filtered, washed with Et<sub>2</sub>O and hexane, and dried under vacuum to give **151** as white solid (1.89 g, 97%). <sup>1</sup>H NMR (400 MHz, Acetone-*d*<sub>6</sub>)  $\delta$  8.96 (d, *J* = 2.5 Hz, 2H), 8.28 (d, *J* = 8.2 Hz, 2H), 8.13 (dd, *J* = 8.2, 2.5 Hz, 2H), 7.71 (dd, *J* = 7.6, 1.4 Hz, 4H), 7.57–7.49 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 4H), 3.98 (s, 18H); <sup>13</sup>C NMR (100 MHz, Acetone-*d*<sub>6</sub>)  $\delta$  151.4, 150.3, 139.9, 136.5, 136.1, 135.1, 131.8, 130.9, 129.3, 122.0 (q, *J* = 8.2, 321.1 Hz), 121.1, 115.7, 57.8; HRMS(FAB<sup>+</sup>) Calcd for C<sub>31</sub>H<sub>34</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>SSi<sup>+</sup> ([M-<sup>-</sup>OTf]<sup>+</sup>) 599.2006, Found 599.2012.

#### Silafluorene 152



Compound **152** was synthesized according to the reported method.<sup>[80]</sup> To a dry Schlenk flask equipped with a magnetic stir bar was added the compound **151** (150 mg, 0.200 mmol, 1.0 equiv) and  $PdCl_2(PPh_3)_2$  (2.8 mg, 0.0040 mmol, 2.0 mol%). The flask was sealed with a rubber septum,

evacuated/filled with nitrogen. THF (0.4 mL) was added via syringe, and the resultant slurry was stirred for 5 min. Then phenylmagnesium bromide (0.5 M solution in THF, 0.88 mL, 0.44 mmol, 2.2 equiv) was added dropwise at room temperature. After 1 h, the reaction mixture was quenched with water (1 mL) and 6N HCl (3 mL), extracted with Et<sub>2</sub>O. The organic extract was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The crude product was purified by chromatography on silica gel (eluent: hexane/ethyl acetate = 100:0 to 20:1) to give the compound **152** as white solid (93.2 mg, 96% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.22 (s, 2H), 7.92 (d, *J* = 7.3 Hz, 2H), 7.80–7.71 (m, 8H), 7.61 (d, *J* = 7.3 Hz, 2H), 7.57–7.37 (m, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.4, 144.0, 141.5, 135.7, 135.1, 134.5, 132.7, 130.3, 129.0, 128.3, 127.8, 127.5, 127.2, 120.3; HRMS(EI<sup>+</sup>) Calcd for C<sub>36</sub>H<sub>26</sub>Si ([M]<sup>+</sup>) 486.1798, Found 486.1804.

## Silafluorene 153



The same method as **152**. The reaction was carried out using 0.15 mmol of **151**. (4-methoxyphenyl)magnesium bromide (1.0 M solution in THF, 0.33 mL, 0.33 mmol, 2.2 equiv) were used. The crude product was purified by chromatography on silica gel (eluent: hexane/dichloromethane = 5:1 to 2:1) to give the compound

**153** as white solid (43.2 mg, 53% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, J = 1.4 Hz, 2H), 7.84 (d, J = 7.3 Hz, 2H), 7.72–7.70 (m, 4H), 7.63 (dt, J = 9.3, 2.5 Hz, 4H), 7.52 (dd, J = 7.3, 1.4 Hz, 2H), 7.45–7.35 (m, 6H), 7.02 (dt, J = 9.6, 2.5 Hz, 4H), 3.88 (s, 6H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 149.5, 143.6, 135.7, 134.5, 134.0, 133.0, 130.3, 128.5, 128.3, 126.8, 119.8, 114.4, 55.5 (one carbon is missing); HRMS(EI<sup>+</sup>) Calcd for C<sub>38</sub>H<sub>30</sub>O<sub>2</sub>Si ([M]<sup>+</sup>) 546.2010, Found 546.2012.

#### Silafluorene 154



The same method as **152**. The reaction was carried out using 0.15 mmol of **151**. (4-fluorophenyl)magnesium bromide (0.5 M solution in THF, 1.2 mL, 0.60 mmol, 4.0 equiv) were used. The crude product was purified by chromatography on silica gel (eluent: hexane/dichloromethane = 5:1) to give the compound **154** as white solid as white solid (55.3 mg, 71% yield). <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 1.1 Hz, 2H), 7.86 (d, J = 7.8 Hz, 2H), 7.70 (dd, J = 7.8, 1.4 Hz, 4H), 7.66–7.63 (m, 4H), 7.51 (dd, J = 7.5, 1.6 Hz, 2H), 7.44–7.36 (m, 6H), 7.20–7.15 (m, 4H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  162.8 (<sup>1</sup> $J_{C-F}$  = 245.6 Hz), 149.3, 143.1, 137.6 (<sup>4</sup> $J_{C-F}$  = 2.9 Hz), 135.7, 135.3, 134.6, 132.6, 130.4, 129.1 (<sup>3</sup> $J_{C-F}$  = 8.6 Hz), 128.4, 127.1, 120.1, 115.9 (<sup>2</sup> $J_{C-F}$  = 21.5 Hz); HRMS(EI<sup>+</sup>) Calcd for C<sub>36</sub>H<sub>24</sub>F<sub>2</sub>Si ([M]<sup>+</sup>) 522.1610, Found 522.1616.

# Silafluorene 155



Ph Ph

 $\cap$ 

The same method as **152**. The reaction was carried out using 0.15 mmol of **151**. Allylmagnesium bromide (1.0 M solution in THF, 1.2 mL, 0.33 mmol, 2.2 equiv) were used. The crude product was purified by chromatography on silica gel (eluent: hexane/ethyl acetate = 50:1) to give the corresponding silafluorene **155** as white solid (27.6 mg, 34% yield). <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.71–7.69 (m, 4H), 7.65–7.63 (m, 4H), 7.42–7.31 (m, 6H), 7.15 (dd, J = 7.3, 1.4 Hz, 2H), 6.08–5.98 (m, 2H), 5.19–5.11 (m, 4H), 3.48 (d, J = 6.9 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.3, 143.0, 137.4, 135.6, 134.2, 133.9, 133.2, 130.1, 128.4, 128.2, 121.7, 116.3, 40.8; HRMS(EI<sup>+</sup>) Calcd for C<sub>30</sub>H<sub>26</sub>Si ([M]<sup>+</sup>) 414.1798, Found 414.1803.

The byproduct of the reaction between dimethoxy-biphenyl **144p** (45.1 mg 0.200 mmol, 1.0 equiv) and dihydrodiphenylsilane **145a** (111 mg, 0.600 mmol, 3.0 equiv) was obtained by recrystallization from the dichloromethane/ethanol solution as a white solid (56 mg).

Spectral Data: <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 (d, J = 7.8 Hz, 12H), 7.33 (t, J = 7.3 Hz, 6H), 7.16 (dd, J = 7.5, 7.5 Hz, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) Ph  $\delta$  134.6, 134.5, 130.1, 127.7.

<sup>Ph</sup> <sup>Ph</sup> Based on the spectral data of the compound, one possible structure is Hexaphenylcyclotrisiloxane, the cyclic trimerization product of  $H_2SiPh_2$  with  $H_2O$ .<sup>[76b]</sup>



Figure 2.2. Mass Spectrum of the byproduct (EI<sup>+</sup>).



# 2.4.4 Experiment for Detecting By-product H<sub>2</sub>

To detect the by-product H<sub>2</sub>, <sup>1</sup>H NMR experiment was conducted.<sup>[34]</sup> Biphenyl **144b** (60.5 mg, 0.250 mmol, 1.0 equiv) and tris(pentafluorophenyl)borane (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, 6.4 mg, 0.013 mmol, 5.0 mol%) was added to a NMR tube with a J. Young valve. The NMR tube was closed and filled with nitrogen. Toluene- $d_8$  (0.50 mL) was added via syringe. 2,6-Lutidine (2.2  $\mu$ L, 2.0 mg, 0.019 mmol, 7.5 mol%) and diphenylsilane **145a** (0.14 mL, 138 mg, 0.750 mmol, 3.0 equiv) were then added to the mixture. The <sup>1</sup>H NMR spectrum of the reaction mixture was recorded. Then, the NMR tube was placed into an of oil bath (100 °C). After 2 h, the mixture was checked by <sup>1</sup>H NMR spectroscopy again. After completion of the reaction (24 h), <sup>1</sup>H NMR of the resulted mixture was detected. Finally, the solvent and the possible H<sub>2</sub> by-product were removed under reduced pressure and the residue was dissolved in toluene- $d_8$  again. In comparison, the resulting mixture was subjected to <sup>1</sup>H NMR spectroscopy again. As shown in figure 2.4, the proton signal of H<sub>2</sub> was observed at 4.49 ppm.



Figure 2.4. Observation of signal of  $H_2$  by <sup>1</sup>H NMR.
# Chapter 3

# Synthesis of Six-membered Silacycles by Borane-catalyzed Double Sila-Friedel–Crafts Reaction

In this chapter, I introduced a catalytic preparation method of six-membered silacyclic compounds such as phenoxasilins and phenothiasilins. A borane-catalyzed double sila-Friedel– Crafts reaction of amino groups-substituted diaryl ethers and dihydrosilanes successfully proceeded to afford phenoxasilin derivatives in moderate to excellent yields. Under the optimal conditions, phenothiasilins were also obtained from the corresponding diaryl thioethers and dihydrosilanes. In addition, I investigated the gram-scale synthesis of bis(dimethylamino)phenoxasilin and the conversions of its amino groups.

# **3.1 Introduction**

The silicon-bridged six-membered biarys (phenazasilines, phenoxasilins, phenothiasilins), benefitting from both Si and a heteroatom in a fused six-membered ring, are important in organosilicon chemistry, and have fascinating applications as organic electronic materials (**166** and **167**),<sup>[94]</sup> ligands (**168** and **169**),<sup>[95]</sup> and reagents (Scheme 3.1).<sup>[96]</sup> Although a variety of methods have been developed for the preparation of siloles over the last 10 years, preparative methods for the six-membered silacyclic ring system remain relatively unexplored. Thus, the development of novel approaches to construct six-membered silacyclic skeletons is demanded.





These six-membered silacyles are generally prepared by the reaction between dichlorosilane reagents and heteroatom-bridged dilithiated diaryl compounds **170**, such as dilithiated diaryl ethers and dilithiated diaryl thioethers (Scheme 3.2).<sup>[50]</sup>

Scheme 3.2. Classical synthetic route for six-membered silacycles.



An intramolecular nucleophilic substitution at the silicon atom using organolithium reagents **173** via the cleavage of an inert C–Si bond has been developed for the synthesis of six-membered silacycles **174** (Scheme 3.3).<sup>[51]</sup>

Scheme 3.3. Intramolecular S<sub>N</sub>-Si leading to six-membered silacycles.



In addition, catalytic reaction systems were also developed as efficient synthetic strategies. The rhodium-catalyzed synthesis of phenazasilines biarylhydrosilanes **176** was presented by Huang's group (Scheme 3.4).<sup>[48b]</sup> This method offered opportunities for preparing  $\pi$ -extended phenazasilines with enhanced optoelectronic properties for device applications in organic electronics.





Shintani and Nozaki *et al.* developed a palladium-catalyzed asymmetric synthesis of 5,10dihydrophenazasilines **180** with silicon-stereogenic center. The reaction proceeded via an unprecedented enantioselective 1,5-palladium migration. High enantioselectivity was achieved by employing 4,4'-bis(trimethylsilyl)-(R)-Binap as the chiral ligand, and a series of mechanistic investigations were carried out to probe the catalytic cycle of this process (Scheme 3.5).<sup>[97]</sup>

**Scheme 3.5.** Palladium-catalyzed asymmetric synthesis of 5,10-dihydrophenazasilines with silicon-stereogenic center via an unprecedented enantioselective 1,5-palladium migration.



Based on the double sila-Friedel–Crafts reactions for the synthesis of silafluorene derivatives described in Chapter 2,<sup>[70]</sup> I envisaged that the catalytic reaction of heteroatom-bridged aminodiaryls with dihydrosilanes for the preparation of six-membered silacycles is feasible (Scheme 3.6). I hypothesized that the desired silacyclic compounds will be formed through the ion-pair intermediate **183**.

Scheme 3.6. Borane-catalyzed double sila-Friedel–Crafts reaction for the synthesis of sixmembered silacyclic compounds.



#### **3.2 Results and Discussion**

First, the reaction of diaryl ether **181a** and diphenyldihydrosilane **145a** was investigated (Table 3.1). The diary ethers **181a** was prepared according to a reported procedure: that is, Culcatalyzed O-arylation of aminophenol using picolinic acid as the ligand (Scheme 3.7).<sup>[98]</sup>

Scheme 3.7. Synthesis of diaryl ethers 181a-f.



Under the optimal condition used for the synthesis of silafluorene derivatives in Chapter 2, that is,  $(B(C_6F_5)_3 (5.0 \text{ mol}\%))$  and 2,6-lutidine (7.5 mol%) in chlorobenzene at 100 °C, the desired phenoxasilin **184a** was obtained in 60% yield (entry 1). The structure of phenoxasilin **184a** was determined by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, HRMS spectrometry and single crystal X-ray crystallography. When the reaction temperature was increased to 140 °C, the yield of **184a** was improved to 88% (entry 2). 3.0 mol% of the catalyst effectively promoted the reaction (entry 3), while the yield of **184a** decreased in the case of 1.5 mol% of the catalyst (entry 4). Finally, it was found that the reaction in the absence of 2,6-lutidine gave the best result with the yield of **99%** (entry 5). This reaction proceeded with excellent yield, even without using a base, probably due to the enhanced nucleophilicity and basicity of **181a** compared to biphenyl **144**, which arise from the conjugation of oxygen atom.

| Me <sub>2</sub> N | 0<br>181a          | NMe <sub>2</sub><br>+ H <sub>2</sub> SiPh <sub>2</sub><br><b>145a</b> | B(C <sub>6</sub> F <sub>5</sub> ) <sub>3</sub> (x r<br>2,6-lutidine (y<br>chlorobenz<br>temperature | mol%) Me₂N<br>(mol%)<br>zene<br>, 24 h | NMe<br>Si<br>Ph Ph<br>184a |
|-------------------|--------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|
|                   | entry <sup>a</sup> | x (mol%)                                                              | y (mol%)                                                                                            | temp (°C)                              | yield (%)                  |
|                   | 1                  | 5.0                                                                   | 7.5                                                                                                 | 100                                    | 60                         |
|                   | 2                  | 5.0                                                                   | 7.5                                                                                                 | 140                                    | 88                         |
|                   | 3                  | 3.0                                                                   | 7.5                                                                                                 | 140                                    | 97                         |
|                   | 4                  | 1.5                                                                   | 7.5                                                                                                 | 140                                    | 87                         |
|                   | 5                  | 3.0                                                                   | 0                                                                                                   | 140                                    | 99                         |

Table 3.1. Optimization of reaction conditions for the synthesis of phenoxalin 184a.

<sup>a</sup>181a (0.25 mmol), 145a (0.75 mmol), chlorobenzene (0.4 mL).

The X-ray single crystal structure analysis revealed that the compound **184a** has the rigid structure with low bent angles (< 4°) between the planes of two phenyl groups (numbered as 1 and 2) around the O atom (Figure 3.1). This structure is more flat than the reported  $\pi$ -extended phenazasilines with the angles < 11°.<sup>[48b]</sup>

Figure 3.1. Single crystal X-ray structure of 184a in the solid state. Displacement ellipsoids are drawn at the 50% probability level. All hydrogen atoms are omitted for clarity.



The scope of the dihydrosilanes **145** was then investigated (Scheme 3.8). The reactions between phenylmethyldihydrosilane **145b** and diethyldihydrosilane **145c** gave the corresponding phenoxasilins **184b** and **184c** with 66 and 74% yields, respectively. When a catalytic amount of 2,6-lutidine was used, the yields of **184b** and **184c** were improved to 83 and 91%, probably because of the enhancement of the deprotonation step by 2,6-lutidine.<sup>[30]</sup> The reaction of phenylhydrosilane **145d** gave the phenoxasilin product **184d** in 59% and 63% yield, respectively. In this rection, the substrate was consumed completely, and no product other than **184d** was obtained after the purification by column chromatography on silica gel. The

possible deoxygenation of diaryl ether **181a** with Ph<sub>3</sub>SiH as the reductant catalyzed by  $B(C_6F_5)_3$  occurred.<sup>[99]</sup> Phenoxasilin **184e** was obtained from di(4-bromo-phenyl)dihydrosilane **145e** in 83% yield without loss of the bromine atom. Additionally, 9,9-dihydro-5-silafluorene **145f** can be used for the preparation of spiro-type phenoxasilin **184f** which was obtained in 96% yield. This spiro-structure was reported as partial structures of emission materials in organic electronic devices.<sup>[100]</sup>



<sup>a</sup>**181a** (1.0 equiv), **145** (3.0 equiv), B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (3.0 mol%), 140 °C, 24 h. <sup>b</sup>**181a** (1.0 equiv), **145** (3.0 equiv), B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (3.0 mol%), 2,6-lutidine (7.5 mol%), 140 °C, 24 h.

Compared to diaryldihydrosilane and arylhydrosilane, the efficiency of 2,6-lutidine was more significant in the case of phenylmethyldihydrosilane and diethyldihydrosilane. These results can be rationalized by the stability of the silicenium ion by  $\beta$ -silicon effect of the alkyl group (Scheme 3.9).<sup>[101]</sup>





Subsequently, I investigated the scope of biaryl ethers and biaryl thioethers using dihydrodiphenylsilane **145a** (Scheme 3.11). Biaryl ethers **181b–f** were synthesized following the same method as described for **181a** (Scheme 3.7).<sup>[98]</sup> Biary thioethers **181g–h** were synthesized by Pd/BINAP-catalyzed amination of bis(3-bromophenyl)sulfan (Scheme 3.10).<sup>[74]</sup>





Pyrrolidine-substituted phenoxasilin **184g** was formed in 80% yield from diaryl ether **181b**. The chloro-substituted diaryl ether was transformed into phenoxasilin **184h** in 94% yield without influence of the chlorine atom. The methyl-substituted phenoxasilins **184i** and **184j** were obtained in good yields despite the steric effect of the methyl group. The biaryl ether bearing one of SMe group instead of NMe<sub>2</sub> group **181k** gave a mixture of the desired phenoxasilin **184k** and the uncyclized hydrosilane **184k'** via a single sila-Friedel–Crafts reaction in 35% yield with 2,6-lutidine (**184k**:**184k'** = 63:37). This result was rationalized as the weaker electron-donating ability of the SMe group compared to that of NMe<sub>2</sub>. Upon increasing the reaction temperature to 180 °C, the ratio of cyclized compound **184k** improved and the mixture of **184k** and **184k'** was obtained in 68% yield (**184k**:**184k'** = 92:8). Diaryl thioether **181g** was also converted to phenothiasilin **184l** in 93% yield. The reaction system was applied to *N*-(benzyl)methylamin-substituted diaryl thioether **181h**, and phenothiasilin **184m** was obtained in 58% yield. The moderate conversion of the benzylmethylamino diaryl thioether **181h** compared to diaryl thioether **181g** is possibly due to the decreased electron density at the benzene rings.



Scheme 3.11. Scope of diaryl ether and diaryl thioether derivatives.

<sup>a</sup>**181** (1.0 equiv), **145a** (3.0 equiv), B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (3.0 mol%), 140 °C, 24 h. <sup>b</sup>**181** (1.0 equiv), **145a** (3.0 equiv), B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (3.0 mol%), 2,6-lutidine (7.5 mol%), 140 °C, 24 h. <sup>c</sup>180 °C.

This reaction system was not applicable to sila-Friedel–Crafts reaction of triaryl amine **185**, triaryl phosphine **186**, and tetraaryl silane **187** (Scheme 3.12). Triaryl amines **185** as a substrate,

some uncertain structures other than the desired sila-Friedel–Crafts products were obtained. In addition, triaryl phosphine **186** and tetraaryl silane **187** were recovered completely after the reactions. These results are probably due to the low electron density in **186** and **187** compared with diaryl ether **181a**, or in other side, the steric hinderance of the phenyl groups on the P and Si atoms.

Scheme 3.12. Other substrates.



The gram-scale synthesis of phenoxasilin **184a** was conducted (Scheme 3.13). The reaction of 1.00 g of diaryl ether **181a** with 2.16 g of dihydrodiphenylsilane **145a** in the presence of a catalytic amount of  $B(C_6F_5)_3$  afforded 1.59 g of phenoxasilin **184a** in 93% yield, which is comparable to the yield in 0.250 mmol scale reaction of **181a** with **145a** (99%), demonstrating the practicability of this protocol.



Besides, the amino groups of phenoxasilin **184a** was converted to phenyl groups via the cross-coupling reaction (Scheme 3.14).<sup>[80]</sup> Preparation of the ammonium salt **188** by the treatment of **184a** with MeOTf, which followed by the sequential palladium-catalyzed cross-coupling reaction with the Grignard reagent (PhMgBr), afforded the desired diphenylated phenoxasilin **189** in 87% yield.



Scheme 3.14. Transformation of the amino groups in 184a.

# **3.3 Conclusion**

In conclusion, I have developed the catalytic preparation method of phenoxasilin and phenothiasilin derivatives from diaryl ethers and diaryl thioether via double sila-Friedel–Crafts reaction. This is the first example of the synthesis of the silicon-containing six-membered cyclic compounds by direct reactions between diaryl ethers or diaryl thioether and dihydrosilanes. The reaction system can be used for the gram-scale synthesis of phenoxasilins. Moreover, the transformation of the amino groups in the phenoxasilin product were also demonstrated. I hope that the reaction system will be useful for developing high-performance multi-heteroatom modified aromatic molecules for organic optoelectronics.

# **3.4 Experimental Section**

# 3.4.1 Synthesis and Characterization of Substrates

# 3,3'-Oxybis(*N*,*N*-dimethylaniline) (181a)

Me<sub>2</sub>N NMe<sub>2</sub> Compound **181a** was synthesized according to the reported method.<sup>[98]</sup> To a mixture of 3-(dimethylamino)phenol (987 mg, 7.20 mmol, 1.2 equiv), CuI (114 mg, 0.600 mmol, 10 mol%), 2-

picolinic acid (148 mg, 1.20 mmol, 20 mol%) and K<sub>3</sub>PO<sub>4</sub> (2.55 g, 12.0 mmol, 2.0 equiv) in DMSO (15 mL) at room temperature was added 3-bromo-*N*,*N*-dimethylaniline (**S1**, 1.20 g, 6.00 mmol, 1.0 equiv) and the mixture was stirred vigorously at 90 °C for 24 h. The reaction mixture was cooled to room temperature, filtered with Celite and washed with EtOAc (50 mL). The filtrate was diluted with EtOAc (50 mL) and washed with brine (3 × 50 mL). The aqueous layers were extracted with EtOAc (2 × 50 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and the solvent removed in vacuo. Purification by column chromatography (eluent: hexane/EtOAc 20:1 to 10:1) gave compound **181a** as white solid (1.14 g, 76% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15 (dd, *J* = 8.0, 8.0 Hz, 2H), 6.44–6.48 (m, 4H), 6.35 (dd, *J* = 8.0, 1.6 Hz, 2H), 2.93 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.5, 152.2, 129.9, 107.5, 106.9, 103.5, 40.7; HRMS(EI<sup>+</sup>) Calcd for C<sub>16</sub>H<sub>20</sub>N<sub>2</sub>O ([M]<sup>+</sup>) 256.1570, Found 256.1578.

# 1,1'-[Oxybis(3,1-phenylene)]dipyrrolidine (181b)



Compound **181b** was obtained in 56% yield (355 mg, 1.12 mmol) following the same method as described for **181a** by the reaction between 1-(3-bromophenyl)pyrrolidine<sup>[102]</sup> (452 mg, 2.00 mmol) and 3- (pyrrolidin-1-yl)phenol (392 mg, 2.40 mmol). <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>)  $\delta$  7.13 (dd, J = 8.2, 8.2 Hz, 2H), 6.28–6.31 (m, 6H), 3.23–3.27 (m, 8H), 1.96–2.00 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.5, 149.4, 129.9, 106.7, 105.8, 102.5, 47.8, 25.6; HRMS(EI<sup>+</sup>) Calcd for C<sub>20</sub>H<sub>24</sub>N<sub>2</sub>O ([M]<sup>+</sup>) 308.1883, Found 308.1890.

#### 2-Chloro-5-(3-(dimethylamino)phenoxy)-*N*,*N*-dimethylaniline (181c)



Compound **181c** was obtained in 62% yield (449 mg, 1.55 mmol) following the same method as described for **181a** by the reaction between **S4** (586 mg, 2.50 mmol) and 3-(dimethylamino)phenol

(412 mg, 3.00 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.24 (d, J = 8.7 Hz, 1H), 7.17 (dd, J = 8.2, 8.2 Hz, 1H), 6.78 (d, J = 2.7 Hz, 1H), 6.56 (dd, J = 8.7, 2.7 Hz, 1H), 6.49 (dd, J = 8.5, 2.5 Hz, 1H), 6.39 (dd, J = 2.3, 2.3 Hz, 1H), 6.32 (dd, J = 8.0, 2.1 Hz, 1H), 2.93 (s, 6H), 2.79 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  157.9, 156.9, 152.2, 151.6, 131.2, 130.1, 121.8, 112.9, 111.0, 108.0, 106.8, 103.4, 43.8, 40.6; HRMS (EI<sup>+</sup>) Calcd for C<sub>16</sub>H<sub>19</sub>ClN<sub>2</sub>O ([M]<sup>+</sup>) 290.1180, Found 290.1187.

#### 5-(3-(Dimethylamino)phenoxy)-*N*,*N*,2-trimethylaniline (181d)



Compound **181d** was obtained in 52% yield (354 mg, 1.31 mmol) following the same method as described for **181a** by the reaction

between 3-bromo-*N*,*N*,6-trimethylaniline (535 mg, 2.50 mmol) and 3-(dimethylamino)phenol (412 mg, 3.00 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15 (dd, *J* = 8.2, 8.2 Hz, 1H), 7.07 (d, *J* = 8.2 Hz, 1H), 6.76 (d, *J* = 2.7 Hz, 1H), 6.58 (dd, *J* = 8.2, 2.7 Hz, 1H), 6.46 (dd, *J* = 8.0, 2.1 Hz, 1H), 6.41 (dd, *J* = 2.3, 2.3 Hz, 1H), 6.31 (dd, *J* = 7.8, 1.8 Hz, 1H), 2.93 (s, 6H), 2.67 (s, 6H), 2.28 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.7, 155.8, 154.0, 152.2, 131.8, 130.0, 126.6, 112.7, 109.9, 107.4, 106.4, 103.1, 44.2, 40.7, 18.1; HRMS (EI<sup>+</sup>) Calcd for C<sub>17</sub>H<sub>22</sub>N<sub>2</sub>O ([M]<sup>+</sup>) 270.1727, Found 270.1732.

#### 3-(3-(Dimethylamino)phenoxy)-*N*,*N*,5-trimethylaniline (181e)



Compound **181e** was obtained in 54% yield (369 mg, 1.36 mmol) following the same method as described for **181a** by the reaction between **S6** (535 mg, 2.50 mmol) and 3-(dimethylamino)phenol (412 mg, 3.00 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15 (dd, *J* 

= 8.0, 8.0 Hz, 1H), 6.44–6.48 (m, 2H), 6.35 (dd, J = 8.0, 1.1 Hz, 1H), 6.27 (dd, J = 2.3, 2.3 Hz, 2H), 6.19 (s, 1H), 2.93 (s, 6H), 2.91 (s, 6H), 2.26 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.4, 158.4, 152.1, 152.0, 140.0, 129.9, 108.3, 107.8, 107.5, 107.0, 103.6, 100.8, 40.8, 40.7, 22.1; HRMS (EI<sup>+</sup>) Calcd for C<sub>17</sub>H<sub>22</sub>N<sub>2</sub>O ([M]<sup>+</sup>) 270.1727, Found 270.1729.

#### N,N-Dimethyl-3-(3-(methylthio)phenoxy)aniline (181f)



Compound **181f** was obtained in 44% yield (285 mg, 1.10 mmol) following the same method as described for **181a** by the reaction between 3-bromo-*N*,*N*-dimethylaniline (508 mg, 2.50 mmol) and

3-(methylthio)phenol (412 mg, 3.00 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15–7.23 (m, 2H), 6.91–6.96 (m, 2H), 6.76 (dd, J = 8.2, 1.1 Hz, 1H), 6.49 (dd, J = 8.0, 2.1 Hz, 1H), 6.41 (dd, J = 2.3, 2.3 Hz, 1H), 6.33 (dd, J = 8.2, 1.8 Hz, 1H), 2.93 (s, 6H), 2.45 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.2, 157.8, 152.2, 140.2, 130.1, 129.9, 120.8, 116.4, 115.2, 108.0, 107.1, 103.7, 40.6, 15.7; HRMS (EI<sup>+</sup>) Calcd for C<sub>15</sub>H<sub>17</sub>NOS ([M]<sup>+</sup>) 259.1025, Found 259.1032.

#### Bis(3-(pyrrolidin-1-yl)phenyl)sulfane (181g)



Compound **181g** was synthesized according to a reported method.<sup>[74]</sup> A Schlenk flask was charged with bis(3-bromophenyl)sulfane<sup>[103]</sup> (313 mg, 0.910 mmol, 1.00 equiv), pyrrolidine (226  $\mu$ L, 2.73 mmol, 3.0 equiv), NaO'Bu (262 mg,

2.73 mmol, 3.0 equiv), Pd(dba)<sub>2</sub> (21.6 mg, 80.0 µmol, 4.00 mol %), BINAP (67.0 mg, 110 µmol, 12.0 mol %), and toluene (1.0 mL) under N<sub>2</sub>. The flask was immersed in an oil bath and heated to 80 °C with stirring overnight. The mixture was cooled to room temperature, filtered over Celite, and concentrated. The crude product was then purified by column chromatography (eluent: hexane) on silica gel to give **181g** as white solid (173 mg, 59%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.12 (dd, *J* = 7.8, 7.8 Hz, 2H), 6.62–6.64 (m, 4H), 6.42–6.44 (m, 2H), 3.22–3.25 (m, 8H), 1.96–1.99 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.4, 136.6, 129.7, 118.0, 114.0, 110.4, 47.7, 25.6; HRMS (EI<sup>+</sup>) Calcd for C<sub>20</sub>H<sub>24</sub>N<sub>2</sub>S ([M]<sup>+</sup>) 324.1655, Found 324.1660.

#### 3,3'-Thiobis(*N*-benzyl-*N*-methylaniline) (181h)



Compound **181h** was obtained in 71% yield following the same method as described for **181g** by the reaction between bis(3-bromophenyl)sulfan<sup>[103]</sup> (258 mg, 0.750 mmol) and benzylmethylamine (218 mg, 1.80 mmol). <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.29 (dd, J = 7.3, 7.3 Hz, 4H), 7.16–7.25 (m, 6H), 7.10 (dd, J = 8.0, 8.0 Hz, 2H), 6.76 (dd, J = 2.1, 2.1 Hz, 2H), 6.66 (d, J = 7.8 Hz, 2H), 6.59 (dd, J = 8.5, 2.5 Hz, 2H), 4.48 (s, 4H), 2.97 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.3, 138.8, 136.5, 129.8, 128.7, 127.0, 126.8, 119.1, 114.5, 111.1, 56.6, 38.7; HRMS (EI<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>28</sub>N<sub>2</sub>S ([M]<sup>+</sup>) 424.1968, Found 424.1971.

# **3.4.2** General Procedure for the Borane-catalyzed Double Sila-Friedel – Crafts Reaction and Spectral Data of Six-membered Silacycles 184<sup>[34,70]</sup>

A test tube with a screw cap equipped with a magnetic stirring bar was charged diaryl ether **181a** (64.1 mg, 0.250 mmol, 1.00 equiv) and tris(pentafluorophenyl)borane (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, 3.80 mg, 0.00750 mmol, 3.0 mol%). The tube was evacuated and filled with nitrogen. Chlorobenzene (0.40 mL) was added via syringe. Diphenylsilane **145a** (0.140 mL, 0.750 mmol, 3.0 equiv) was then added to the mixture (if necessary, 2,6-lutidine (2.20  $\mu$ L, 0.0190 mmol, 7.5 mol %) was also added). The test tube was closed with a screw cap and the reaction mixture was stirred at 140 °C (oil bath) for 24 h. After completion of the reaction, the mixture was purified by column chromatography on silica gel (eluent: hexane/EtOAc 25:1) to give compound **184a** as white solid (106 mg, 97% yield).

#### Phenoxasilin 184a



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (dd, J = 7.8, 1.4 Hz, 4H), 7.28–7.38 (m, 8H), 6.52–6.54 (m, 4H), 2.98 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.1, 153.2, 136.09, 136.06, 135.9, 129.4, 127.9, 108.3, 102.3, 100.6, 40.3; HRMS (EI<sup>+</sup>) Calcd for

C<sub>28</sub>H<sub>28</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 436.1965, Found 436.1972.

#### Phenoxasilin 184b



Compound **184b** was obtained as white solid (62.5 mg, 83%) from diaryl ether **181a** (51.3 mg, 0.200 mmol) with 2,6-lutidine. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52–7.54 (m, 2H), 7.29–7.31 (m, 5H), 6.54 (d, *J* = 2.5 Hz, 1H), 6.50–6.52 (m, 3H), 2.99 (s, 12H),

0.70 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.7, 153.1, 138.6, 135.3, 134.8, 129.2, 127.9, 108.2, 104.0, 100.6, 40.4, -2.0; HRMS (EI<sup>+</sup>) Calcd for C<sub>23</sub>H<sub>26</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 374.1809, Found 374.1811.

#### Phenoxasilin 184c



Compound **184c** was obtained as white solid (77.2 mg, 91%) from diaryl ether **181a** (64.1 mg, 0.250 mmol) with 2,6-lutidine. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 (d, J = 8.2 Hz, 2H), 6.54 (dd, J = 8.0, 2.1 Hz, 2H), 6.47 (d, J = 2.3 Hz, 2H), 2.99 (s, 12H), 0.85–

0.90 (m, 10H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.0, 152.8, 134.8, 107.8, 103.5, 100.7, 40.4, 7.8, 6.6; HRMS (EI<sup>+</sup>) Calcd for C<sub>20</sub>H<sub>28</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 340.1965, Found 340.1974.

#### Phenoxasilin 184d



Compound **184d** was obtained as white solid (56.6 mg, 63%) from diaryl ether **181a** (64.8 mg, 0.253 mmol) with 2,6-lutidine. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (dd, J = 7.5, 1.6 Hz, 2H), 7.28–7.38 (m, 5H), 6.52 (dd, J = 6.4, 2.3 Hz, 4H), 5.42 (s, 1H),

3.00 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.9, 153.3, 136.3, 136.0, 135.5, 129.8, 128.1, 108.2, 100.6, 100.2, 40.3; HRMS (EI<sup>+</sup>) Calcd for C<sub>22</sub>H<sub>24</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 360.1652, Found 360.1656.

#### Phenoxasilin 184e



Compound **184e** was obtained as white solid (98.1 mg, 83%) from diaryl ether **181a** (51.3 mg, 0.200 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40–7.47 (m, 8H), 7.30 (dd, J = 4.1 Hz, 2H), 6.51–6.55 (m, 4H), 3.00 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.1, 153.3, 137.4, 135.7, 134.6, 131.2, 124.7, 108.4, 100.9, 100.6, 40.3;

HRMS (EI<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>26</sub>Br<sub>2</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 592.0176, Found 592.1083.

#### Phenoxasilin 184f



Compound **184f** was obtained as white solid (83.9 mg, 96%) from diaryl ether **181a** (51.3 mg, 0.200 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 7.3 Hz, 2H), 7.43–7.47 (m, 4H), 7.19 (dd, J = 7.3, 7.3 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (dd, J = 8.2, 2.3 Hz, 2H), 2.99 (s, 12H); <sup>13</sup>C NMR (100

MHz, CDCl<sub>3</sub>)  $\delta$  163.2, 153.6, 148.9, 137.5, 135.9, 134.5, 130.9, 127.9, 120.7, 108.1, 100.6, 99.4, 40.3; HRMS (EI<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>26</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 434.1809, Found 434.1814.

#### Phenoxasilin 184g



Compound **184g** was obtained as white solid (78.1 mg, 80%) from diaryl ether **181b** (61.7 mg, 0.200 mmol). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.55 (dd, J = 8.0, 1.6 Hz, 4H), 7.30–7.39 (m, 8H), 6.40 (dd, J = 8.2, 2.3 Hz, 2H), 6.34 (d, J = 2.3 Hz, 2H), 3.30–

3.33 (m, 8H), 1.99–2.02 (m, 8H); <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  162.2, 151.0, 136.7, 136.1, 135.9, 129.6, 128.0, 108.4, 101.1, 99.9, 47.9, 25.8; HRMS (EI<sup>+</sup>) Calcd for C<sub>32</sub>H<sub>32</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 488.2278, Found 488.2284.

#### Phenoxasilin 184h



Compound **184h** was obtained as white solid (92.6 mg, 94%) from diaryl ether **181c** (61.1 mg, 0.210 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (d, J = 6.4 Hz, 4H), 7.33–7.44 (m, 8H), 6.89 (s, 1H), 6.52–6.57 (m, 2H), 3.01 (s, 6H), 2.86 (s, 6H); <sup>13</sup>C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$  161.8, 160.0, 153.3, 153.1, 136.3, 136.1, 136.0, 134.9, 129.9, 128.1, 122.0, 111.0, 109.7, 108.7, 101.2, 100.4, 43.7, 40.3; HRMS (EI<sup>+</sup>) Calcd for C<sub>28</sub>H<sub>27</sub>ClN<sub>2</sub>OSi ([M]<sup>+</sup>) 470.1576, Found 470.1582.

#### Phenoxasilin 184i



Compound **184i** was obtained as white solid (95.2 mg, 99%) from diaryl ether **181d** (54.1 mg, 0.200 mmol). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.56 (dd, J = 8.0, 1.6 Hz, 4H), 7.32–7.39 (m, 7H), 7.26 (s, 1H), 6.82 (s, 1H), 6.56 (dd, J = 8.2, 2.3 Hz, 1H), 6.50 (d, J =

2.3 Hz, 1H), 2.99 (s, 6H), 2.74 (s, 6H), 2.24 (s, 3H); <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  162.2, 160.0, 156.4, 153.7, 137.2, 136.1, 136.0, 135.9, 129.9, 128.2, 126.4, 108.7, 108.6, 107.6, 101.6, 100.5, 43.9, 40.3, 18.3; HRMS (EI<sup>+</sup>) Calcd for C<sub>29</sub>H<sub>30</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 450.2122, Found 450.2127.

#### Phenoxasilin 184j



Compound **184j** was obtained as white solid (72.5 mg, 81%) from diaryl ether **181e** (54.1 mg, 0.200 mmol) with 2,6-lutidine. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (dd, J = 7.8, 1.8 Hz, 4H), 7.30–7.35 (m, 6H), 7.24 (d, J = 4.3 Hz, 1H), 6.43–6.48 (m, 3H), 6.36 (d,

J = 2.3 Hz, 1H), 3.00 (s, 6H), 2.96 (s, 6H), 2.17 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.7, 161.4, 153.1, 153.0, 146.1, 136.3, 136.1, 136.0, 129.3, 127.9, 109.4, 108.3, 103.6, 101.5, 100.0, 98.8, 40.3, 40.2, 24.7; HRMS (EI<sup>+</sup>) Calcd for C<sub>29</sub>H<sub>30</sub>N<sub>2</sub>OSi ([M]<sup>+</sup>) 450.2122, Found 450.2126.

#### Phenoxasilin 184k



The mixture of **184k** and the hydrosilane **184k**' produced via a single sila-Friedel–Crafts reaction was obtained as white solid (60.1 mg, 68% yield of **184k** and **184k**' (**184k**:**184k**' = 92:8)) from diaryl ether **181f** (52.0 mg, 0.200 mmol). <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.64 (dd, J = 7.8, 1.4 Hz, 4H), 7.38–7.50 (m, 8H), 7.14 (d, J = 1.1 Hz, 1H), 7.04 (dd, J = 8.0, 1.6 Hz, 1H), 6.62 (td, J = 8.9, 2.3 Hz, 2H), 3.08 (s, 6H), 2.58 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.8, 161.0, 153.3, 142.7, 136.0, 135.9, 135.5, 135.1, 129.8, 128.0, 120.6, 114.6, 112.6, 108.6, 101.5, 100.6, 40.3, 15.1; HRMS (EI<sup>+</sup>) Calcd for C<sub>27</sub>H<sub>25</sub>NOSSi ([M]<sup>+</sup>) 439.1421, Found 439.1427.

#### **Phenothiasiline 1841**



Compound **184I** was obtained as white solid (46.9 mg, 93%) from diaryl ether **181g** (32.6 mg, 0.100 mmol). <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.46 (dd, J = 8.0, 1.6 Hz, 4H), 7.31–7.41 (m, 6H), 7.21 (d, J = 8.2 Hz, 2H), 6.67 (d, J = 2.3 Hz, 2H), 6.44 (dd,

J = 8.2, 2.3 Hz, 2H), 3.27–3.30 (m, 8H), 1.97–2.00 (m, 8H); <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  149.0, 144.2, 136.8, 136.3, 135.2, 129.7, 128.1, 115.7, 110.2, 109.8, 47.7, 25.7; HRMS (EI<sup>+</sup>) Calcd for C<sub>32</sub>H<sub>32</sub>N<sub>2</sub>SSi ([M]<sup>+</sup>) 504.2050, Found 504.2057.

#### Phenothiasiline 184m



Compound **184m** was obtained as white solid (70.4 mg, 58%) from diaryl ether **181h** (85.5 mg, 0.200 mmol). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (dd, J = 8.0, 1.6 Hz, 4H), 7.29–7.40 (m, 11H), 7.18–7.25 (m, 7H), 6.88 (d, J = 2.3 Hz, 2H), 6.59 (dd, J = 8.2, 2.3 Hz, 2H), 4.54 (s, 4H), 3.03 (s, 6H); <sup>13</sup>C NMR (100 MHz,

CDCl<sub>3</sub>)  $\delta$  150.5, 144.3, 138.6, 136.8, 136.3, 134.4, 129.6, 128.8, 127.9, 127.1, 126.7, 117.6, 110.3, 56.1, 38.5 (one carbon is missing); HRMS (EI<sup>+</sup>) Calcd for C<sub>40</sub>H<sub>36</sub>N<sub>2</sub>SSi ([M]<sup>+</sup>) 604.2363, Found 604.2370.

#### **Ammonium Salt 188**



A dry round-bottomed flask equipped with a magnetic stirring bar was charged with **184a** (175 mg, 0.400 mmol, 1.00 equiv) and  $CH_2Cl_2$  (5 mL). To the resultant stirring solution was added dropwise MeOTf (144 mg, 0.880 mmol, 2.20 equiv) at room temperature. The solution was stirred at room temperature for 2 h.

The reaction mixture was concentrated to remove CH<sub>2</sub>Cl<sub>2</sub> and the residue was treated with Et<sub>2</sub>O (20 mL). The resultant solid was filtered, washed with Et<sub>2</sub>O and hexane, and dried under vacuum to give **188** as white solid (279 mg, 91%). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.96 (d, J = 8.2 Hz, 2H), 7.84–7.90 (m, 4H), 7.40–7.57 (m, 12H), 3.66 (s, 18H); <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  159.3, 150.2, 137.5, 135.4, 131.3, 130.9, 128.6, 120.7 (q, J = 322 Hz), 117.6, 116.0, 110.8, 56.3; HRMS (FAB<sup>+</sup>) Calcd for C<sub>31</sub>H<sub>34</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub>SSi ([M-<sup>-</sup>OTf]<sup>+</sup>) 615.1961, Found 615.1962.

#### Phenoxasilin 189



Compound **189** was synthesized according to a reported method. To a dry Schlenk flask equipped with a magnetic stirring bar was added compound **188** (153 mg, 0.200 mmol, 1.0 equiv) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (2.8 mg, 0.0040 mmol, 2.0 mol %). The flask was sealed with a rubber

septum, evacuated/filled with nitrogen. THF (1.5 mL) was added via syringe, and the resultant slurry was stirred for 5 min. Then phenylmagnesium bromide (0.5 M solution in THF, 0.88 mL, 0.44 mmol, 2.2 equiv) was added dropwise at room temperature. After 1 h, the reaction mixture was quenched with water (1.0 mL) and 6 M HCl (3 mL), then extracted with Et<sub>2</sub>O. The organic

extract was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The crude product was purified by chromatography on silica gel (eluent: hexane/EtOAc 50:1) to give compound **189** as white solid (87.2 mg, 87% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63–7.68 (m, 10H), 7.53 (d, *J* = 1.4 Hz, 2H), 7.37–7.49 (m, 14H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.9, 144.9, 140.5, 136.1, 136.0, 134.1, 130.2, 129.0, 128.3, 128.0, 127.4, 121.9, 116.8, 114.7; HRMS(EI<sup>+</sup>) Calcd for C<sub>36</sub>H<sub>26</sub>OSi ([M]<sup>+</sup>) 502.1747, Found 502.1755.

# **Chapter 4**

# Facile Synthesis of Tribenzosilepins from Terphenyls and Dihydrosilanes by Double Sila-Friedel–Crafts Reaction

In this chapter, I described the synthesis of tribenzosilepins from terphenyls and dihydrosilanes using a double sila-Friedel–Crafts reaction. Tribenzosilepin derivatives with different substituents were formed in moderate to high yield. The synthesis of bidirectional silepin was successfully achieved using the reaction system. Moreover, the amino groups of tribenzosilepin derivatives can be transformed into aryl groups, and the backbone  $\pi$ -system in tribenzosilepin can be extended. Additionally, optical properties of selected tribenzosilepins were investigated.

# 4.1 Introduction

In organic electronics and photonics, silicon-containing cyclic compounds have fascinating potential applications prospects.<sup>[62c,64b,94]</sup> In the past several decades, the syntheses and photoluminescence properties of five/six-membered silacycles have been widely explored.<sup>[5,50f,64a,65,70,97,104]</sup> Furthermore, silepin (silacycloheptatriene) **190** and benzene-ring-fused silepins including monobenzosilepin **191**, dibenzosilepin **192**, and tribenzosilepin **193**, also exhibit attractive structural features (Scheme 4.1).





The synthetic methods and optical properties of silepins<sup>[96b,105]</sup> and dibenzosilepins<sup>[52]</sup> have been researched. Some dibenzosilepins show strong blue fluorescence (quantum yield up to

0.93).<sup>[52i,k]</sup> Generally, they were prepared by the reaction between the bis(2-lithioaryl)ethene **194** and dichlorosilanes with the following oxidation (Scheme 4.2a). Besides, rutheniumcatalyzed ring-closing metathesis of bis(2-vinylphenyl)silanes **196** (Scheme 4.2b)<sup>[52j]</sup> and palladium-catalyzed protocols (Scheme 4.2c)<sup>[52k]</sup> have been reported for the synthesis of dibenzosilepines. The synthesis of monobenzosilepin derivatives have been developed by several methods.<sup>[106]</sup>



Scheme 4.2. Synthetic approaches of dibenzosilepin derivatives.

Conversely, the synthesis of tribenzosilepins have not been widely studied. A conventional reaction between dilithiated terphenyl **200** and dimethyldichlorosilane lead to the formation of tribenzosilepin **201** in very low yield (Scheme 4.3a).<sup>[53]</sup> The iridium-catalyzed intramolecular reaction of 2',6'-diaryl-2-(hydrosilyl)biphenyl **202** through dehydrogenative C–H/Si–H coupling have been developed recently (Scheme 4.3b).<sup>[54]</sup> However, practical synthetic methods of tribenzosilepin derivatives with improved yield based on C–H silylation are still desired.

Scheme 4.3. Synthetic methods of tribenzosilepin.



Electrophilic silvlation is a fundamental pathway for the transformation of the C-H bond into a C-Si bond in order to synthesize organosilicon compounds.<sup>[55]</sup> Electron-deficient borane can effectively activate Si-H bond<sup>[107]</sup> and catalyze the sila-Friedel-Crafts reaction between hydrosilanes and electron-rich aromatic rings.<sup>[31,32,34,39,69]</sup> B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-catalyzed intra- and intermolecular sila-Friedel-Crafts reactions are useful for the synthesis of silacycles, such as dibenzosilole and silafluorene derivatives.<sup>[30]</sup> As mentioned in Chapters 2 and 3, I developed  $B(C_6F_5)_3$ -catalyzed double sila-Friedel–Crafts reaction for the simple synthesis of silafluorene, phenoxasilin, and phenothiasilin derivatives (Scheme 4.4a).<sup>[70,104f]</sup> During the study of the silafluorene synthesis using the diamino-substituted o-terphenyl 204a and diphenyldihydrosilane (145a), the desired bidirectional silafluorene 205 was not obtained. However, the tribenzosilepin 206a was formed. Hence, the result inspired me to start the development of the new synthetic method of tribenzosilepins.

Scheme 4.4. Double sila-Friedel–Crafts reaction for synthesis of silacyclic compounds.

a) Chapter 2, 3: Synthesis of five- and six-membered silacyclic compounds



#### 4.2 Results and Discussion

Terphenyls **204** were synthesized by the Suzuki-Miyaura cross-coupling reaction of substituted 1,2-dibromobenzenes with (3-(dimethylamino)phenyl)boronic acid (Scheme 4.5).<sup>[75]</sup>

Scheme 4.5. Synthesis of substrates 204.



I firstly optimized the reaction conditions by tuning the reaction temperature and the loading amounts of dihydrosilane **145a**, the borane catalyst, and 2,6-lutidine (Table 4.1). The desired reaction proceeded under the reaction conditions (100 °C, 6.0 equivalents of **145a**, 5.0 mol% of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, and 7.5 mol% of 2,6-lutidine) to afford the tribenzosilepin **206a** in 87% yield (entry 1). Upon decreasing the equivalent of **145a** from 6 to 1.5 equiv, the yield of **206a** remained at approximately 80% (entries 1–3). Although the yield of **206a** maintained when B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> was reduced to 3.0 mol% (entry 4), the yield of **206a** significantly dropped to 63% using 1.0 mol%

of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (entry 5). In addition, the yield decreased to 52% at 80 °C (entry 6). In the absence of 2,6-lutidine, **206a** was obtained in 68% yield (entry 7). By comparing the results in entries 4 and 7, the base slightly accelerated the deprotonation step with the improvement of the yield from 68% to 80%.

Based on the above results, the following experiments were carried out using the reaction conditions shown in entry 4.

| Me <sub>2</sub> N- | <b>204a</b><br>+<br>H <sub>2</sub> SiPh <sub>2</sub><br>(X equiv)<br><b>145a</b> | –NMe <sub>2</sub> B(C <sub>6</sub> F <sub>5</sub> );<br>2,6-lutid<br>chlorc<br>T °( | 3 (Y mol%)<br>ine (Z mol%)<br>benzene<br>C, 24 h | Me <sub>2</sub> N | Si<br>Ph Ph<br>206a |
|--------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|---------------------|
| entry              | X (equiv)                                                                        | Y (mol%)                                                                            | Z (mol%)                                         | T (°C)            | yield (%)           |
| 1                  | 6.0                                                                              | 5.0                                                                                 | 7.5                                              | 100               | 87                  |
| 2                  | 3.0                                                                              | 5.0                                                                                 | 7.5                                              | 100               | 84                  |
| 3                  | 1.5                                                                              | 5.0                                                                                 | 7.5                                              | 100               | 81                  |
| 4                  | 1.5                                                                              | 3.0                                                                                 | 7.5                                              | 100               | 80                  |
| 5                  | 1.5                                                                              | 1.0                                                                                 | 7.5                                              | 100               | 63                  |
| 6                  | 1.5                                                                              | 3.0                                                                                 | 7.5                                              | 80                | 52                  |
| 7                  | 1.5                                                                              | 3.0                                                                                 | 0                                                | 100               | 68                  |

Table 4.1. Optimization of reaction conditions for synthesis of 206a fromdiaminoterphenyl 204a and dihydrodiphenylsilane 145a.

Single crystals of **206a** were obtained from its dichloromethane/ethanol solution by the slow evaporation of the solvent. The single-crystal X-ray diffraction analysis of **206a** in solid-state was shown in Figure 4.1. It revealed that the upper benzene ring, along with the sevenmembered ring in **206a**, formed a saddle-shaped upward conformation, while the two other benzene rings constructed a downward conformation. The benzene moieties connected to the silicon atom are in two distinct structural environments because of the twisted conformation of the silepin skeleton. **Figure 4.1.** Single crystal X-ray structure of **206a** in the solid state. Displacement ellipsoids are drawn at the 50% probability level. All hydrogen atoms are omitted for clarity.



The optimized reaction conditions were applied for the synthesis of other silepin derivatives (Scheme 4.6). Methyl- or dimethylamino-substituted terphenyl **204b** and **204c** gave the corresponding silepins **206b** and **206c** in 85% and 38% yields, respectively. 43% of substrate **204c** was recovered after purification by flash column chromatography. Difluoro-substituted silepin **206d** was obtained in 24% yield with the recovery of **204d** in 60%. Dibromo-substituted terphenyl **204e** was transformed to **206e** without losing any bromine atoms and can be converted to other functional groups using a wide variety of transformations, such as coupling reactions. In the case of **204e**, the recovery of the substrate is 46%. The low conversion of **204d** and **204e** is mainly due to the decreased electron density at the phenyl ring derived from the inductive effect of halogen.

The formation of five-membered cyclic products were not detected during the double sila-Friedel–Crafts reaction for the synthesis of tribenzosilepin derivative **206a–e**. It is due to the low electron density of the central benzene ring, demonstrated that the double sila-Friedel– Crafts reaction needs electron rich arenes as substrates.

The reaction of the naphthalene-substituted substrate **204f** also proceeded successfully and afforded **206f** in 45% yield. In this reaction, substrate **204f** was not recovered and byproducts were formed (the structures could not be determined). The synthesis of tribenzosilepins is sensitive to the substituents on the central benzene ring. Dihydrodiethylsilane **145c** gave **206g** in 40% yield. Considering about the low boiling point of dihydrodiethylsilane (56 °C), I increased the amount of dihydrodiethylsilane to 3.0 equivalents, as a result, the yield was improved to 59% (recovery of **204a** is 24%). The reaction of **204a** with dihydrosilafluorene **145f** resulted in the formation of the corresponding silepin **206h**, having the spiro-structure, in

93% yield. This is the first example of a 5-silaspiro[4.6] structure being described using the current route of synthesis.



Scheme 4.6. Substrate Scope.

In the <sup>1</sup>H and <sup>13</sup>C NMR spectra, the two aryl or ethyl groups on the silicon atom were observed independently at room temperature. These findings suggest that the two substituents exist in distinct environments in solution and that boat-to-boat ring inversions via the planar conformation was not observed by NMR at ambient temperature.<sup>[53]</sup>

The structure of **206g** in the solid state was confirmed by single crystal X-ray structure analysis (Figure 4.2). To investigate the detail assignment of the two ethyl groups of **206g**, heteronuclear multiple quantum coherence (HMQC) and heteronuclear single quantum correlation (HSQC) of **206g** were measured. The results revealed that the protons (H<sup>1</sup> and H<sup>2</sup>) of one of the ethyl groups were observed at the higher field than H<sub>3</sub> and H<sub>4</sub> by the ring current

<sup>&</sup>lt;sup>a</sup>H<sub>2</sub>SiEt<sub>2</sub> (3 equiv).

effect of the central benzene ring (Figure 4.3a). Additionally, the two ethyl groups of **206g** appeared independently in the <sup>1</sup>H NMR spectrum at 25 °C, 60 °C, and 100 °C in toluene- $d_8$  (Figure 4.3). Even though the shift of peaks was observed, the inversion of **206g** was not detected, even at 100 °C.

Figure 4.2. Single crystal X-ray structure of 206g in the solid state. All hydrogen atoms are omitted for clarity.





Figure 4.3. Variable temperature <sup>1</sup>H NMR of **206g** in toluene- $d_8$ .

The quadruple Friedel–Crafts silylation of tetraphenyl benzene **207** was investigated under the optimal reaction conditions (Scheme 4.7). Substrate **207** was synthesized by Suzuki-Miyaura cross-coupling reaction of 1,2,4,5-tetrabromobenzene with (3-(dimethylamino)phenyl boronic acid (experimental section).<sup>[75]</sup> As a result, disilepin **209** was successfully obtained in 85% yield.

Based on the result of the non-inversion of the silepin ring as described above, I considered that the formation of *cis*- or *trans*-stereoisomers related to the two silicon atoms of the corresponding bidirectional **209** was possible (Scheme 4.7). The solid structure of **209** was revealed by single-crystal X-ray crystallography, which confirmed it to be the *trans*-isomer (Figure 4.4). The selective formation of the *trans*-isomer is probably due to the steric repulsion

of the two phenyl groups on the two silicon atoms during the second intramolecular silylation step, which hampered the formation of the *cis* isomer.



Scheme 4.7. Synthesis of bidirectional silepin 212.

Figure 4.4. Single crystal X-Ray structure of **209** in the solid state. Displacement ellipsoids are drawn at the 50% probability level. All hydrogen atoms are omitted for clarity.



The amino groups of tribenzosilepin can be transformed to other substituents via crosscoupling reactions between aryltrimethylammonium triflates and aryl Grignard reagents (Scheme 4.8).<sup>[80]</sup> Firstly, the amino groups of **206g** were converted to their corresponding triflate salts **210**. Thereafter, the reaction of **210** with phenyl Grignard reagent using a catalytic amount of PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> afforded the corresponding cross-coupling product **211** in 88% yield.



Scheme 4.8. Conversions of amino groups on silepin 206g.

Curved  $\pi$ -conjugated molecules exhibit attractive optical and electrochemical properties.<sup>[108]</sup> Considering the saddle structure of the obtained tribenzosilepin derivatives, I planned to construct silicon-embedded curved  $\pi$ -conjugated molecules.

The  $\pi$ -conjugated system of tribenzosilepin can be enlarged through conversions of amino groups of silepins to aryl groups and a sequential oxidative cyclization. Firstly, the amino groups of **206a** were converted to **214** through the cross-coupling reaction between triflate salts **212** and biphenyl Turbo Grignard reagents using a catalytic amount of PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> at 60 °C afforded the corresponding products **214a** and **214b** in 69% and 96% yield, respectively (Scheme 4.9).<sup>[80]</sup>



Scheme 4.9. Conversions of amino groups on silepin 206a.

I then investigated cyclization reaction of **214a** using FeCl<sub>3</sub> system.<sup>[109]</sup> However, the desired reaction did not proceed, and the substrate was recovered completely. The conditions using FeCl<sub>3</sub>/DDQ afforded products with very poor solubility that I couldn't confirm the structure (Scheme 4.10).<sup>[110]</sup>

Scheme 4.10. Attempt on enlargement of  $\pi$ -conjugated system from 214a.



To enhance the solubility and the reactivity, biphenyl bearing  $-OC_6H_{13}$  groups, which have high solubility and electron donating ability, was adopted. Although I investigated several Scholl reaction conditions (Scheme 4.11), desired  $\pi$ -extended compound **216** was not obtained. Using 10 or 6 equivalents of FeCl<sub>3</sub> (conditions A and B), afforded the desilylated product **217**.<sup>[111]</sup> In the reaction system using FeCl<sub>3</sub>/DDQ (condition C), it was uncertain that the reaction product was obtained.<sup>[110]</sup> The reactions using I<sub>2</sub> and propylene oxide (condition D)<sup>[112]</sup> or [bis(trifluoroacetoxy)iodo]benzene (PIFA) and BF<sub>3</sub>OEt<sub>2</sub> (condition E),<sup>[113]</sup> did not proceed.



Scheme 4.11. Attempt on enlargement of  $\pi$ -conjugated system from 214b.

Based on the above results for preparing the curved  $\pi$ -conjugated molecules, I tried to extend the  $\pi$ -system of the aromatics at the backbone.

Finally, the  $\pi$ -conjugated system of **206e** was extended by a cross-coupling reaction and a successive Scholl reaction (Scheme 4.12). The Suzuki–Miyaura cross-coupling reaction of **206e** with 3-methoxyphenylboronic acid afforded **218** in 84% yield.<sup>[114]</sup> The backbone  $\pi$ -system in **218** was further extended by a Scholl-type reaction using FeCl<sub>3</sub> as an oxidant to give **219** in 88% yield without the loss of the SiPh<sub>2</sub> and dimethyl amino groups.<sup>[111]</sup> The structure of **219** was confirmed by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, high-resolution mass spectrometry, and X-ray single crystallography.



Scheme 4.12. Extension of the backbone  $\pi$ -system from 206e.

Extension of the  $\pi$ -conjugated system of substrates 220 and 222 was also investigated (Scheme 4.13). There was no reaction proceed with the two substrates, the compound 220 and 222 were recovered after the reaction. These results are mainly due to the structure rigidity of the phenanthrene framework in 220 and the steric hinderance with the phenyl groups on the backbone in 222.

#### Scheme 4.13. Other substrates



The optical properties of **206a**, **206f**, **209**, and **219** were studied by UV/Vis absorption and photoluminescence spectroscopy (Table 4.2, Figure 4.5). In the absorption spectra, the  $\lambda_{max}$  of the silepins appeared in the range of 269–284 nm. Photoluminescence spectroscopy indicated that the silepins emitted violet-blue fluorescence. The emission peaks of **209** and **219** were slightly red-shifted (10 nm) compared to that of **206a**, while **206f** with the direct extension of the  $\pi$ -conjugated system have a red-shifted of 19 nm. From **206a** to **206f**, the red-shift PL band clearly supports the extended  $\pi$ -system by the introduction of a naphthyl group. There was only a small difference of quantum yields between **206a**, **206f**, and **209**. While silepin **219** exhibited threefold improvement of photoluminescence quantum yield compared to **206a**.



Table 4.2. Optical properties of 206a, 206f, 209 and 219.

| Entry | $\lambda_{max}(nm)$ | $\lambda_{em}(nm)$ | $arPhi_{ m F}$ |
|-------|---------------------|--------------------|----------------|
| 206a  | 284                 | 387                | 0.11           |
| 206f  | 280                 | 406                | 0.16           |
| 209   | 269                 | 395                | 0.14           |
| 219   | 282                 | 397                | 0.37           |

Figure 4.5. UV absorption (solid line) and photoluminescence (dot line) spectra of 206a, 206f, 209, and 219 in toluene (5.0×10<sup>-5</sup> M).



# 4.3 Conclusion

In conclusion, I have developed a facile synthetic method for the synthesis of tribenzosilepin derivatives. The double sila-Friedel–Crafts reaction between amino group-containing terphenyls and dihydrosilanes afforded tribenzosilepins bearing electron-withdrawing or - donating groups on the backbone in good yields. This is a rare example of the synthesis of tribenzosilepin derivatives and the first example of the direct synthesis from terphenyls and dihydrosilanes. The rigid structures of resulting tribenzosilepins at ambient temperature were confirmed by their NMR spectra in solution. The reaction of the bidirectional substrate stereoselectively formed the *trans*-disilepin. In addition, the extension of  $\pi$ -conjugate systems of the silepin derivatives and the transformation of amino groups to other aromatic substituents were achieved. I hope that the provided synthesis will prove useful for the synthesis of novel  $\pi$ -conjugated systems.

# 4.4 Experimental Section

#### 4.4.1 Synthesis and Characterization of Substrates

# *N*<sup>3</sup>,*N*<sup>3</sup>'',*N*<sup>3''</sup>-Tetramethyl-[1,1':2',1''-terphenyl]-3,3''-diamine (204a)

Compound 204a was synthesized by Suzuki-Miyaura coupling reaction.<sup>[75]</sup> A mixture of (3-(dimethylamino)phenyl)boronic acid (0.550 g, 8.80 mmol, 2.2 equiv), 1,2-dibromobenzene (0.940 g, Me<sub>2</sub>N ·NMe<sub>2</sub> 4.00 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (2.10 g, 20.0 mmol, 5.0 equiv) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.140 mg, 0.200 mmol, 5.0 mol%) in a mixture of toluene (30 mL), water (4.0 mL) and ethanol (8.0 mL) was heated to 80 °C under nitrogen atmosphere. After the completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3  $\times$  50 mL). The combined organic phases were dried over MgSO4 and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 15:1) on silica gel to give 204a (0.970 g, 76%) as colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.47 (dd, J = 5.5, 3.7 Hz, 2H), 7.38–7.41 (m, 2H), 7.11 (dd, J = 8.0, 8.0 Hz, 2H), 6.58–6.61 (m, 4H), 6.53 (s, 2H), 2.76 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 150.4, 142.5, 141.5, 130.5, 128.6, 127.3, 118.7, 115.4, 111.3, 40.9; HRMS(EI<sup>+</sup>) Calcd for C<sub>22</sub>H<sub>24</sub>N<sub>2</sub> ([M]<sup>+</sup>) 316.1934, Found 316.1939.

#### *N*<sup>3</sup>,*N*<sup>3</sup>'',*N*<sup>3''</sup>,*A*'-Pentamethyl-[1,1':2',1''-terphenyl]-3,3''-diamine (204b)



The same method as **204a**. A mixture of (3-(dimethylamino)phenyl)boronic acid (0.730 g, 4.40 mmol, 2.2 equiv), 1,2-dibromo-4-methylbenzene (0.500 g, 2.00 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (1.10 g, 10.0 mmol, 5.0 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (120 mg, 0.100 mmol, 5.0 mol%) in a mixture of toluene (20 mL),

water (3.0 mL) and ethanol (6.0 mL) was heated to 80 °C under nitrogen atmosphere. After the completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phases were dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give **204b** (0.48 g, 68%) as colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 (d, *J* = 7.8 Hz, 1H), 7.29 (s, 1H), 7.21 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.07–7.12 (m, 2H), 6.57–6.60 (m, 4H), 6.51–6.53 (m, 2H), 2.76 (s, 6H), 2.75 (s, 6H), 2.43 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.39, 150.37, 142.6, 142.4, 141.3, 138.7, 137.0, 131.2, 130.4, 128.5, 128.0, 118.8, 118.7, 115.5, 115.4, 111.3, 111.1, 40.9, 21.3; HRMS(EI<sup>+</sup>) Calcd for C<sub>23</sub>H<sub>26</sub>N<sub>2</sub> ([M]<sup>+</sup>) 330.2091, Found 330.2097.
### $N^{3}, N^{3}, N^{3''}, N^{3''}, N^{4'}, N^{4'}$ -Hexamethyl-[1,1':2',1'-terphenyl]-3,3',4'-triamine (204c)



The same method as **204a**. A mixture of (3-(dimethylamino)phenyl)boronic acid (0.623 g, 3.75 mmol, 2.5 equiv), 3,4-dibromo-N,N-dimethylaniline (0.426 g, 1.5 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (0.812 g, 7.5 mmol, 5.0 equiv) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (57.8 mg, 0.075 mmol, 5.0 mol%) in a mixture of toluene (14 mL),

degassed water (2.0 mL) and ethanol (2.0 mL) was heated to 80 °C under nitrogen. After the completion of the reaction monitored by TLC (12 h), the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc ( $3 \times 30$  mL). The combined organic phases were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 10:1) on silica gel to give **204c** (471 mg, 87%) as yellowish solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (d, J = 8.7 Hz, 1H), 7.09–7.17 (m, 2H), 6.86 (d, J = 2.3 Hz, 1H), 6.83 (dd, J = 8.5, 3.0 Hz, 1H), 6.60–6.70 (m, 5H), 6.53–6.54 (m, 1H), 3.03 (s, 6H), 2.79 (s, 6H), 2.76 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  13C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.2, 150.1, 149.8, 143.4, 142.6, 142.1, 131.2, 130.0, 128.6, 128.5, 119.2, 118.9, 115.9, 115.6, 114.7, 111.7, 111.4, 110.9, 41.11, 41.00, 40.85; HRMS(EI<sup>+</sup>) Calcd for C<sub>24</sub>H<sub>29</sub>N<sub>3</sub> ([M]<sup>+</sup>) 359.2356, Found 359.2361.

### 4',5'-Difluoro-*N*<sup>3</sup>,*N*<sup>3</sup>'',*N*<sup>3''</sup>-tetramethyl-[1,1':2',1''-terphenyl]-3,3''-diamine (204d)



The same method as **204a**. A mixture of (3-(dimethylamino)phenyl)boronic acid (0.500 g, 3.00 mmol, 3.0 equiv), 1,2-dibromo-4,5-difluorobenzene (0.278 g, 1.00 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (0.546 g, 5.20 mmol, 5.0 equiv) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (37.0 mg, 0.050 mmol, 5.0 mol%) in a mixture of

toluene (10 mL), degassed water (1.5 mL) and ethanol (1.5 mL) was heated to 80 °C under nitrogen. After the completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 30 mL). The combined organic phases were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give **204d** (198 mg, 56%) as colorless oil. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.25–7.30 (m, 2H), 7.10 (dd, *J* = 7.6, 8.4 Hz, 2H), 6.64 (dd, *J* = 8.2, 2.3 Hz, 2H), 6.54 (d, *J* = 7.3 Hz, 2H), 6.48–6.49 (m, 2H), 2.78 (s, 12H); <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  150.6, 149.4 (dd, *J* = 248.5, 14.4 Hz), 141.0, 138.6 (dd, *J* = 7.3, 5.6 Hz), 129.0, 119.2 (dd, *J* = 15.8, 10.1 Hz), 118.6, 115.2, 111.9, 40.9; HRMS(EI<sup>+</sup>) Calcd for C<sub>22</sub>H<sub>22</sub>F<sub>2</sub>N<sub>2</sub> ([M]<sup>+</sup>) 352.1746, Found 352.1752.

## 4',5'-Dibromo- N<sup>3</sup>,N<sup>3</sup>'',N<sup>3''</sup>,N<sup>3''</sup>-tetramethyl-[1,1':2',1''-terphenyl]-3,3''-diamine (204e)



The same method as **204a**. A mixture of (3-(dimethylamino)phenyl)boronic acid (0.18 g, 1.1 mmol, 2.2 equiv), 1,2-dibromo-4,5-diiodobenzene (0.240 g, 0.50 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (0.270 g, 2.5 mmol, 5.0 equiv) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>

(18.0 mg, 0.0250 mmol, 5.0 mol%) in a mixture of toluene (10 mL), degassed water (2.0 mL) and ethanol (4.0 mL) was heated to 50 °C under nitrogen. After the completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic phases were dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel to give **204e** (203 mg, 85%) as colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (s, 2H), 7.11 (dd, *J* = 8.0, 8.0 Hz, 2H), 6.59 (d, *J* = 7.7 Hz, 4H), 6.45 (s, 2H), 2.77 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.3, 142.1, 140.2, 135.1, 128.9, 123.3, 118.5, 114.8, 112.0, 40.9; HRMS(EI<sup>+</sup>) Calcd for C<sub>22</sub>H<sub>22</sub>Br<sub>2</sub>N<sub>2</sub> ([M]<sup>+</sup>) 472.0144, Found 472.0149.

### 3,3'-(Naphthalene-2,3-diyl)bis(N,N-dimethylaniline) (204f)



The same method 204a. mixture (3as А of (dimethylamino)phenyl)boronic acid (0.550 g, 3.30 mmol, 2.2 equiv), naphthalene-2,3-diyl bis(trifluoromethanesulfonate) (0.640 g, 1.50 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (0.800 g, 7.50 mmol, 5.0 equiv) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (53.0 mg, 0.0750 mmol, 5.0 mol%) in a mixture of toluene (15 mL), water (2.0 mL) and ethanol (4.0 mL)

was heated to 80 °C under nitrogen. After completion of the reaction monitored by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic phases were dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 15:1) on silica gel to give **204f** (0.59 g, quant) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.93 (s, 2H), 7.88 (dd, *J* = 6.4, 3.2 Hz, 2H), 7.49 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.14 (dd, *J* = 8.0, 8.0 Hz, 2H), 6.69 (d, *J* = 7.8 Hz, 2H), 6.60–6.64 (m, 4H), 2.78 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.4, 142.4, 140.1, 132.7, 129.1, 128.6, 127.8, 126.2, 118.8, 115.5, 111.4, 40.9; HRMS(EI<sup>+</sup>) Calcd for C<sub>26</sub>H<sub>26</sub>N<sub>2</sub> ([M]<sup>+</sup>) 366.2091, Found 366.2094.

## 4',5'-Bis(3-(dimethylamino)phenyl)- $N^3$ , $N^3$ ", $N^3$ ", $N^3$ "-tetramethyl-[1,1':2',1"-terphenyl]-3,3"-diamine (207)



The same method as **204a**. A mixture of (3-(dimethylamino)phenyl)boronic acid (1.50 g, 9.00 mmol, 4.5 equiv), 1,2,4,5-tetrabromobenzene (0.790 g, 2.00 mmol, 1.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (2.10 g, 20.0 mmol, 10 equiv) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.14 g, 0.2 mmol, 10 mol%) in a mixture of toluene (25 mL), water (3.0 mL) and ethanol (6.0 mL) was heated to 80 °C under nitrogen. After the completion of the reaction monitored by TLC, the mixture was cooled to room temperature,

then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc ( $3 \times 30$  mL). The combined organic phases were dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: dichloromethane/hexane = 5:1) on silica gel to give **207** (0.43 g, 39%) as yellow powder. <sup>1</sup>H

NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.64 (s, 2H), 7.11 (dd, J = 8.0, 8.0 Hz, 4H), 6.60–6.66 (m, 12H), 2.78 (s, 24H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.5, 142.1, 140.3, 132.5, 128.6, 118.8, 115.2, 111.2, 40.9; HRMS(EI<sup>+</sup>) Calcd for C<sub>38</sub>H<sub>42</sub>N<sub>4</sub> ([M]<sup>+</sup>) 554.3404, Found 554.3409.

### 4.4.2 General Procedure for Synthesis of Silepin Derivatives by a Borane Catalyst<sup>[34,70]</sup>

To a test tube with a screw cap equipped with a magnetic stir bar was charged triphenyl **204a** (63.0 mg, 0.200 mmol, 1.0 equiv) and tris(pentafluorophenyl)borane (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, 3.10 mg, 0.00600 mmol, 3.0 mol%). The test tube was evacuated and filled with nitrogen. Chlorobenzene (0.40 mL) was added via syringe. Diphenylsilane **145a** (55.3  $\mu$ L, 0.30 mmol, 1.5 equiv) and 2,6-lutidine (1.70  $\mu$ L, 0.0150 mmol, 7.5 mol%) were then added to the mixture. The test tube was closed with a cap. The reaction mixture was stirred at 100 °C (oil bath) for 24 h. After the completion of the reaction, the mixture was cooled to room temperature. The desired silepin **206a** was obtained by column chromatography (eluent: hexane/ethyl acetate = 20:1) on silica gel in 80% isolated yield.

## N<sup>6</sup>, N<sup>6</sup>, N<sup>12</sup>, N<sup>12</sup>-Tetramethyl-9,9-diphenyl-9*H*-tribenzo[*b*,*d*,*f*]silepin-6,12-diamine (206a)



**206a** was obtained as a white solid (80 mg, 80%).<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.56 (dd, J = 7.9, 1.7 Hz, 2H), 7.41–7.49 (m, 3H), 7.28 (d, J = 8.2 Hz, 2H), 7.17–7.22 (m, 4H), 7.06–7.11 (m, 3H), 6.99 (dd, J = 7.4, 7.4 Hz, 2H), 6.82 (d, J = 2.3 Hz, 2H), 6.62 (dd, J = 8.2, 2.3 Hz, 2H), 2.96 (s, 12H); <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.6, 148.7, 142.0, 137.9, 135.3, 134.8, 134.2, 133.0, 131.9, 129.6, 128.5, 127.8, 126.9, 126.7, 125.3, 114.9, 110.2, 40.4; HRMS(EI<sup>+</sup>) Calcd for C<sub>34</sub>H<sub>32</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 496.2329, Found 496.2333.

## N<sup>6</sup>, N<sup>6</sup>, N<sup>12</sup>, N<sup>12</sup>, 2-Pentamethyl-9,9-diphenyl-9*H*-tribenzo[*b*,*d*,*f*]silepin-6,12-diamine (206b)



**206b** was obtained as a white solid (87 mg, 85%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.56 (dd, J = 8.0, 1.6 Hz, 2H), 7.40–7.48 (m, 3H), 7.25–7.27 (m, 2H), 7.17 (dd, J = 7.8, 1.4 Hz, 2H), 7.07–7.12 (m, 2H), 6.97–7.03 (m, 3H), 6.88 (dd, J = 7.8, 1.8 Hz, 1H), 6.81 (dd, J = 9.4, 2.5 Hz, 2H), 6.59–6.63 (m, 2H), 2.96 (s, 6H), 2.94 (s, 6H), 2.22 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 

151.59, 151.56, 148.8, 148.7, 141.8, 139.2, 137.9, 136.2, 135.4, 134.8, 134.7, 134.3, 133.1, 132.4, 131.9, 129.6, 128.4, 127.8, 127.4, 126.8, 125.3, 125.2, 119.6, 114.8, 110.2, 110.1, 40.5, 40.4, 21.0; HRMS(EI<sup>+</sup>) Calcd for  $C_{35}H_{34}N_2Si$  ([M]<sup>+</sup>) 510.2486, Found 510.2490.

 $N^2, N^2, N^6, N^6, N^{12}, N^{12}$ -Hexamethyl-9,9-diphenyl-9*H*-tribenzo[*b*,*d*,*f*]silepin-2,6,12-triamine (206c)



**206c** was obtained as a white solid (51 mg, 38%).<sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.50–7.53 (m, 2H), 7.46–7.49 (m, 1H), 7.41–7.45 (m, 2H), 7.21 (dd, *J* = 8.2, 1.8 Hz, 2H), 7.17–7.19 (m, 2H), 7.12–7.16 (m, 1H), 7.02–7.06 (m, 3H), 6.84 (d, *J* = 2.3 Hz, 1H), 6.76 (s, 1H), 6.64 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.56–6.61 (m, 3H), 2.96 (s, 6H), 2.95 (s, 6H), 2.85 (s, 6H); <sup>13</sup>C NMR (100 MHz,

CDCl<sub>3</sub>):  $\delta$  151.6, 151.5, 149.4, 149.2, 148.9, 142.5, 137.9, 135.4, 134.7, 134.6, 134.5, 133.3, 132.8, 129.5, 128.4, 127.8, 126.8, 125.3, 125.2, 116.4, 114.9, 114.7, 112.4, 110.2, 109.7, 41.2, 40.5(2C) (one carbon is missing); HRMS(EI<sup>+</sup>) Calcd for C<sub>36</sub>H<sub>37</sub>N<sub>3</sub>Si ([M]<sup>+</sup>) 539.2751, Found 539.2757.

2,3-Difluoro-*N*<sup>6</sup>,*N*<sup>6</sup>,*N*<sup>12</sup>,*N*<sup>12</sup>-tetramethyl-9,9-diphenyl-9*H*-tribenzo[*b*,*d*,*f*]silepine-6,12-diamine (206d)



**206d** was obtained as a white solid (31 mg, 24%).<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.55–7.57 (m, 2H), 7.48–7.52 (m, 1H), 7.44–7.46 (m, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.18–7.21 (m, 3H), 7.01–7.09 (m, 4H), 6.74 (br, 2H), 6.65 (br, 2H), 2.97 (s, 12H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  151.5, 148.3 (dd, J = 250.0, 14.4 Hz), 146.7, 139.0, 137.8, 135.3, 135.0, 133.8, 132.4, 129.8, 129.0,

127.9, 127.1, 125.11, 120.13 (dd, J = 9.4, 7.9 Hz), 114.5 (d, J = 7.8 Hz), 110.6 (d, J = 5.6 Hz), 40.4; HRMS(EI<sup>+</sup>) Calcd for C<sub>34</sub>H<sub>30</sub>F<sub>2</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 532.2141, Found 532.2144.

# 2,3-Dibromo-*N*<sup>6</sup>,*N*<sup>6</sup>,*N*<sup>12</sup>,*N*<sup>12</sup>-tetramethyl-9,9-diphenyl-9*H*-tribenzo[*b*,*d*,*f*]silepine-6,12-diamine (206e)



**206e** was obtained as a white solid (56 mg, 43%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (dd, J = 8.0, 1.6 Hz, 2H), 7.48–7.54 (m, 2H), 7.42–7.46 (m, 2H), 7.41 (s, 2H), 7.26–7.28 (m, 2H), 7.15–7.20 (m, 2H), 7.06 (dd, J = 7.6, 7.6 Hz, 2H), 6.72 (d, J = 2.3 Hz, 2H), 6.63 (dd, J = 8.5, 2.5 Hz, 2H), 2.96 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.6, 146.2, 142.7, 137.8, 136.2, 135.4,

134.9, 133.6, 132.1, 129.9, 129.0, 128.0, 127.0, 125.4, 122.3, 114.2, 110.8, 40.4. HRMS(EI<sup>+</sup>) Calcd for  $C_{34}H_{30}Br_2N_2Si$  ([M]<sup>+</sup>) 652.0540, Found 652.0547.

 $N^7, N^7, N^{13}, N^{13}$ -Tetramethyl-10,10-diphenyl-10*H*-dibenzo[*b*,*f*]naphtho-[2,3-*d*]silepin-7,13-diamine (206f)



**206f** was obtained as a white solid (49 mg, 45%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67–7.70 (m, 4H), 7.57 (dd, J = 8.0, 1.6 Hz, 2H), 7.42–7.49 (m, 3H), 7.37 (q, J = 3.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.16 (dd, J = 7.8, 1.4 Hz, 2H), 6.94 (d, J = 2.3 Hz, 2H), 6.77–6.84 (m, 3H), 6.64 (dd, J = 8.2, 2.7 Hz, 2H), 2.98 (s, 12H);

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.7, 148.9, 140.9, 137.9, 135.3, 134.9, 133.9, 132.9, 132.0, 130.7, 129.6, 128.4, 127.8, 127.4, 126.6, 125.8, 125.3, 115.3, 110.1, 40.5; HRMS(EI<sup>+</sup>) Calcd for C<sub>38</sub>H<sub>34</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 546.2486, Found 546.2492.

## 9,9-Diethyl-N<sup>6</sup>,N<sup>6</sup>,N<sup>12</sup>,N<sup>12</sup>-tetramethyl-9*H*-tribenzo[*b*,*d*,*f*]silepin-6,12-diamine (206g)



**206g** was obtained as a white solid (47 mg, 59%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.44–7.48 (m, 2H), 7.38–7.41 (m, 2H), 7.31 (d, J = 8.2 Hz, 2H), 6.77 (d, J = 2.3 Hz, 2H), 6.64 (dd, J = 8.2, 2.7 Hz, 2H), 2.93 (s, 12H), 1.28 (m, 5H), 0.59 (t, J = 8.0 Hz, 3H), 0.14 (q, J = 7.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.2,

147.7, 142.4, 132.4, 131.7, 127.5, 127.0, 114.9, 110.6, 40.5, 8.1, 7.8, 2.5, 1.0; HRMS(EI<sup>+</sup>) Calcd for  $C_{26}H_{32}N_2Si$  ([M]<sup>+</sup>) 400.2329, Found 400.2334.



Figure 4.6. HMQC spectrum of 206g.



 $N^{6'}, N^{6'}, N^{12'}, N^{12'}$ -Tetramethylspiro[dibenzo[*b*,*d*]silole-5,9'-tribenzo[*b*,*d*,*f*]silepin]-6',12'-diamine (206h)



**206h** was obtained as a white solid (92 mg, 93%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, J = 6.9 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.55–7.64 (m, 5H), 7.46 (dd, J = 7.2, 7.2 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.18–7.22 (m, 1H), 6.88 (d, J = 2.1 Hz, 2H), 6.80 (dd, J = 7.4, 7.4 Hz, 1H), 6.56 (dd, J = 8.5, 2.5 Hz, 2H), 5.64 (d, J = 6.9 Hz, 1H), 2.93 (s, 12H); <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.9, 150.1, 148.0, 147.6, 142.3, 137.2, 135.6, 133.5, 133.3, 133.2, 133.0, 131.0, 130.0, 127.7, 127.6, 127.3, 125.0, 121.5, 120.6, 114.8, 110.7, 40.5. HRMS(EI<sup>+</sup>) Calcd for C<sub>34</sub>H<sub>30</sub>N<sub>2</sub>Si ([M]<sup>+</sup>) 494.2173, Found 494.2173.

(N<sup>6</sup>,N<sup>6</sup>,N<sup>12</sup>,N<sup>12</sup>-Tetramethyl-9,9-diphenyl-9*H*-6,12-diamine)tribenzo[*b*,*d*,*f*]bissilepin (209)



**209** was obtained as a white solid (78 mg, 85%, 0.10 mmol scale). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.62 (dd, J = 7.8, 1.4 Hz, 4H), 7.44– 7.50 (m, 6H), 7.27–7.30 (m, 8H), 6.99–7.05 (m, 6H), 6.84 (s, 2H), 6.59 (dd, J = 8.2, 2.7 Hz, 4H), 6.44 (d, J = 2.3 Hz, 4H), 2.94 (s, 24H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.4, 148.4, 140.0, 137.8, 135.7, 134.8, 134.3, 134.1, 132.7, 129.7, 128.5, 127.9, 126.4, 125.4,

### 114.6, 110.0, 40.4; HRMS(FAB<sup>+</sup>) Calcd for C<sub>62</sub>H<sub>58</sub>N<sub>4</sub>Si ([M+H]<sup>+</sup>) 915.4273, Found 915.4277.

# 9,9-Diethyl-*N*<sup>6</sup>,*N*<sup>6</sup>,*N*<sup>12</sup>,*N*<sup>12</sup>,*N*<sup>12</sup>-hexamethyl-9*H*-tribenzo[*b*,*d*,*f*]silepin-6,12-diaminium triflate (210)



The compound **210** was prepared according to the procedure in the previous literature.<sup>[12]</sup> In a dry two neck round bottom flask equipped with a magnetic stir bar was charged the compound **206g** (200.3 mg, 0.50 mmol, 1.0 equiv) and CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL). To the resultant stirring solution was added dropwise MeOTf

(206 mg, 1.25 mmol, 2.5 equiv) at room temperature. The solution was stirred at room temperature for 2 h. The reaction mixture was concentrated to remove CH<sub>2</sub>Cl<sub>2</sub> and the residue was treated with Et<sub>2</sub>O (20 mL). The resultant solid was filtered, washed with Et<sub>2</sub>O and hexane, and then dried under vacuum to give silepin **210** as a white solid (333 mg, 91%). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  7.88–7.92 (m, 4H), 7.60–7.69 (m, 6H), 3.59 (s, 18H), 1.45 (q, *J* = 7.8 Hz, 2H), 1.28 (t, *J* = 7.5 Hz, 3H), 0.52 (t, *J* = 8.0 Hz, 3H), 0.14 (q, *J* = 7.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  148.6, 147.2, 141.3, 139.2, 133.4, 132.4, 128.8, 121.9, 120.8 (q, *J* = 321 Hz), 118.6, 56.4, 7.6, 7.1, 0.44, -0.07; HRMS(FAB<sup>+</sup>) Calcd for C<sub>29</sub>H<sub>38</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>SSi<sup>+</sup> ([M-OTf <sup>-</sup>]<sup>+</sup>) 579.2319, Found 579.2326.

## 9,9-Diethyl-6,12-diphenyl-9*H*-tribenzo[*b*,*d*,*f*]silepin (211)



To a dry 20 mL Schlenk flask equipped with a magnetic stir bar was added the compound **210** (0.150 g, 0.20 mmol, 1.0 equiv) and  $PdCl_2(PPh_3)_2$  (2.80 mg, 0.00400 mmol, 2.0 mol%). The flask was sealed with a rubber septum, evacuated/filled with nitrogen. THF (2.0 mL) was added via syringe, and the resultant slurry was stirred for 5

min at room temperature. Then phenylmagnesium bromide (0.5 M solution in THF, 0.88 mL, 0.440 mmol, 2.2 equiv) was added dropwise. After 1 h, the reaction mixture was quenched with water (1 mL) and 1N HCl (5 mL), and then extracted with Et<sub>2</sub>O. The organic extract was dried over MgSO<sub>4</sub>, filtered, and concentrated. The crude product was purified by chromatography on silica gel (eluent: hexane/ethyl acetate = 100:0 to 20:1) to give the compound **211** as white powder (82 mg, 88% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.66 (d, *J* = 1.8 Hz, 2H), 7.57–7.60 (m, 6H), 7.49–7.53 (m, 4H), 7.40–7.48 (m, 6H), 7.31–7.35 (m, 2H), 1.37–1.46 (m, 5H), 0.65 (t, *J* = 7.8 Hz, 3H), 0.27 (q, *J* = 7.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  147.1, 142.2, 141.5, 141.1, 139.1, 132.2, 131.9, 129.2, 128.9, 127.5, 127.3, 125.2, 8.1, 7.6, 1.6, 1.0 (one carbon is missing); HRMS(EI<sup>+</sup>) Calcd for C<sub>34</sub>H<sub>30</sub>Si ([M]<sup>+</sup>) 466.2111, Found 466.2118.

# 2,3-Bis(3-methoxyphenyl)- $N^6$ , $N^6$ , $N^{12}$ , $N^{12}$ -tetramethyl-9,9-diphenyl-9*H*-tribenzo[*b*,*d*,*f*]silepin-6,12-diamine (218)



Compound **215** was synthesized by Suzuki-Miyaura coupling reaction.<sup>[114]</sup> A mixture of **206e** (156.0 mg, 0.24 mmol, 1.0 equiv), (3-methoxyphenyl)boronic acid (110 mg, 0.72 mmol, 3.0 equiv), Na<sub>2</sub>CO<sub>3</sub> (127 mg, 1.2 mmol, 5.0 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (14.0 mg, 0.012 mmol, 5.0 mol%) in a mixture of toluene (3 mL), water (0.75 mL) and ethanol (0.75 mL) was heated to 80 °C under nitrogen. After the completion of the reaction monitored

by TLC, the mixture was cooled to room temperature, then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc ( $3 \times 20 \text{ mL}$ ). The combined organic phases were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was then purified further by column chromatography (eluent: hexane/ethyl acetate = 10:1) on silica gel to give **218** (142 mg, 84%) as white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.62–7.64 (m, 2H), 7.45–7.53 (m, 3H), 7.34 (d, *J* = 6.9 Hz, 2H), 7.08–7.22 (m, 8H), 7.03 (dd, *J* = 7.2, 7.2 Hz, 2H), 6.90 (s, 1H), 6.60–6.74 (m, 6H), 6.48–6.51 (m, 2H), 3.63 (s, 6H), 2.96 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.1, 151.7, 148.0, 142.7, 141.4, 138.4, 137.8, 135.6, 134.5, 133.8, 132.5, 129.7, 128.8, 128.3, 127.9, 126.8, 125.74, 125.65, 122.3, 115.2, 114.4, 112.5, 110.4, 55.2, 40.4; HRMS(EI<sup>+</sup>) Calcd for C<sub>48</sub>H<sub>44</sub>N<sub>2</sub>O<sub>2</sub>Si ([M]<sup>+</sup>) 708.3167, Found 708.3171.

# 3,17-Dimethoxy- $N^7$ , $N^7$ , $N^{13}$ , $N^{13}$ -tetramethyl-10,10-diphenyl-10*H*-dibenzo[*b*,*f*]triphenyleno[2,3-d]silepin-7,13-diamine (219)



Compound **219** was synthesized according to the reported procedure.<sup>[111]</sup> Silepin **218** (142 mg, 0.2 mmol, 1.0 equiv) was dissolved in dry dichloromethane (6.0 mL) and cooled to 0 °C in an ice/water bath under a nitrogen atmosphere. A solution of iron (III) chloride (250 mg, 1.54 mmol, 8.0 equiv) in nitromethane (1.0 mL) was added dropwise to the above solution at 0 °C and the mixture was stirred for 3 h at room temperature. To the

resulting mixture was added methanol (10 mL) followed by water (10 mL) and dichloromethane (20 mL). The organic layer was separated and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated to produce a brown oil. The purification of the crude product by column chromatography using hexanes as eluent afforded **219** (122.8 mg, 88%) as white solid. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  8.44 (d, *J* = 8.7 Hz, 2H), 8.38 (s, 2H), 7.95 (d, *J* = 2.7 Hz, 2H), 7.44–7.57 (m, 5H), 7.32–7.35 (m, 3H), 7.19–7.26 (m, 4H), 7.02 (s, 1H), 6.74–6.84 (m, 5H), 3.98 (s, 6H), 3.02 (s, 12H); <sup>13</sup>C NMR (100 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  158.7, 152.0, 148.8, 141.6, 138.1, 135.5, 135.1, 134.1, 132.8, 130.12, 130.06, 128.9, 128.6, 128.2, 127.1, 126.8, 124.7, 124.2, 116.2, 115.6, 110.7, 106.2, 55.9, 40.7 (one carbon is missing); HRMS(EI<sup>+</sup>) Calcd for C<sub>48</sub>H<sub>42</sub>N<sub>2</sub>O<sub>2</sub>Si ([M]<sup>+</sup>) 706.3010, Found 706.3018.

## **Chapter 5**

## Conclusion

In Chapter 1, the general introduction of  $C(sp^2)$ –H silylation and its application is described. I mainly focused on the transition metal-catalyzed  $C(sp^2)$ –H silylation and  $C(sp^2)$ –H silylation by electrophilic aromatic substitution reactions along with some of the reaction mechanisms.

In Chapter 2, the Lewis acid (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>) catalyzed direct synthesis of silafluorene derivatives from biphenyls and dihydrosilanes via a double sila-Friedel–Crafts reaction was disclosed. The synthesized silafluorene derivatives with 22 examples, including multi-substituted derivatives, spirosilabifluorenes, and silicon-bridged terphenyl derivatives, were obtained in good to excellent yields (28–96%). Additionally, conversions of the amino groups of the silafluorene derivatives were also illustrated. However, the transformations of the amino groups are limited to aryl and allyl groups. I hope that novel  $\pi$ -conjugated molecules based on the synthesis of silafluorene derivatives can be obtained through the versatile transformations of the amino groups in the future.

Scheme 5.1. Lewis acid-catalyzed synthesis of silafluorene derivatives from biphenyls and dihydrosilanes via a double sila-Friedel–Crafts reaction.



In Chapter 3, the application of the catalytic synthesis of silafluorenes in Chapter 2 to the six-membered silacyclic compounds was described. With the optimal reaction conditions, phenoxasilin and phenothiasilin derivatives were obtained with 15 examples in moderate to excellent yields (58–99%). The amino groups were converted to aryl groups. Hopefully, the

synthetic methods can produce the promising phenazasilines and six-membered silacycles with heteroatom P or Si.

Scheme 5.2. Synthesis of six-membered silacycles by borane-catalyzed double sila-Friedel–Crafts reaction.



In Chapter 4, the double sila-Friedel–Crafts reaction for the synthesis of tribenzosilepin derivatives using amino group-containing terphenyls and dihydrosilanes was developed. The structure rigidity of the tribenzosilepins in solution at an ambient temperature was supported by X-ray crystallography and (variable temperature) NMR spectra. A bidirectional silylation occurred under this catalytic system, which afforded a disilepin compound with the stereoselective formation of *trans*-isomer. Besides, the enlargement of  $\pi$ -conjugate systems of the silepin skeleton was also realized. The optical properties of some synthesized tribenzosilepins were investigated. It is hoped that construction of the silicon-embedded  $\pi$ -extension systems could be realized through the synthesis of tribenzosilepin derivatives.

Scheme 5.3. Facile synthesis of tribenzosilepins from terphenyls and dihydrosilanes by double sila-Friedel–Crafts reaction.



In conclusions, borane-catalyzed double sila-Friedel–Crafts reactions for the synthesis of silacycles (silafluorene, phenoxasilin, phenothiasilin and tribenzosilepins) from the electron rich arene or heteroarene (diamino-substituted biphenyls, biaryls, and terphenyls) with hydrosilanes was achieved. This is the first example of the synthesis of silacycles from biaryl substrates and dihydrosilanes directly. This reaction system offers an efficient and convenient way for the construction of silacycles, which have been traditionally synthesized by the reaction between dilithiated intermediates and dichlorosilanes or intramolecular silylation from silyl substituted biaryls. However, the reaction system needs electron rich arenes or heteroarenes as substrates, and the electron-donating group was limited to amino groups. This is the limitation of the sila-Friedel–Crafts reaction.

I investigated transformations of the electron-rich amino groups by palladium-catalyzed cross-coupling reaction between ammonium triflate and Grignard reagent, and nickel-catalyzed borylation and C–N bond reduction. Among them, only the cross-coupling reaction proceeded. Desilylation was the problematic point to construct various  $\pi$ -conjugated molecules in some reactions.

Based on these research projects, I believe that the protocols should enrich the chemistry of silicon-containing planar and curved  $\pi$ -conjugated molecules in the near future.

## Supporting Information X-ray Structures

#### S.1 X-ray Structure of Compound 146b

Single crystals of  $C_{28}H_{28}N_2Si$ , 4,6-bis(dimethylamino)-9,9-diphenyl-9*H*-9-silafluorene **146b**, were recrystallized from hot toluene solution. A suitable crystal was selected, and their X-ray diffraction was collected on a XtaLAB AFC10 (RCD3): fixedchi single diffractometer with graphite monochromated Mo-K $\alpha$  radiation ( $\lambda = 0.71070A$ ). The crystal was kept at 123 K during data collection. The data were collected using  $\omega$  scan in the  $\theta$  range of 4.752  $\leq \theta \leq 62.052$  deg. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods,<sup>[115]</sup> and expanded using Fourier techniques.<sup>[116]</sup> Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F2 was based on 19804 observed reflections and 6081 variable parameters. Neutral atom scattering factors were taken from Cromer and Waber.<sup>[117]</sup> All calculations were performed using the Olex-2 crystallographic software package except for refinement,<sup>[118]</sup> which was performed using SHELXL-97.5 Details<sup>[119]</sup> of final refinement as well as the bond lengths and angles are summarized in the supporting information, and the numbering scheme employed is also shown in the supporting information, which were drawn with ORTEP at 50% probability ellipsoid.



#### Crystal structure determination of 146b

**Crystal Data** for **146b** (M =420.61 g/mol): triclinic, space group *P*-1 (no. 2), a = 9.4768(4) Å, b = 10.9099(4) Å, c = 13.1313(5) Å,  $a = 113.798(3)^{\circ}$ ,  $\beta = 91.992(4)^{\circ}$ ,  $\gamma = 112.004(4)^{\circ}$ , V = 1123.73(8) Å<sup>3</sup>, Z = 2, T = 123 K,  $\mu$ (Mo K $\alpha$ ) = 0.123 mm<sup>-1</sup>, *Dcalc* = 1.243 g/cm<sup>3</sup>, 19804 reflections measured (4.752°  $\leq 2\theta \leq 62.052^{\circ}$ ), 6081 unique ( $R_{int} = 0.0303$ ,

 $R_{\text{sigma}} = 0.0328$ ) which were used in all calculations. The final  $R_1$  was 0.0402 ( $I > 2\sigma(I)$ ) and  $wR_2$  was 0.1100 (all data).

Table S.1. Crystal data and structure refinement for 146b.

| Identification code                   | 146b                                                          |
|---------------------------------------|---------------------------------------------------------------|
| Empirical formula                     | $C_{28}H_{28}N_2Si$                                           |
| Formula weight                        | 420.61                                                        |
| Temperature/K                         | 123                                                           |
| Crystal system                        | triclinic                                                     |
| Space group                           | <i>P</i> -1                                                   |
| a/Å                                   | 9.4768(4)                                                     |
| b/Å                                   | 10.9099(4)                                                    |
| c/Å                                   | 13.1313(5)                                                    |
| $\alpha/^{\circ}$                     | 113.798(3)                                                    |
| $eta/^{\circ}$                        | 91.992(4)                                                     |
| $\gamma^{\prime}$                     | 112.004(4)                                                    |
| <i>Volume</i> /Å <sup>3</sup>         | 1123.73(8)                                                    |
| Ζ                                     | 2                                                             |
| <i>Dcalc</i> g/cm <sup>3</sup>        | 1.243                                                         |
| $\mu/\mathrm{mm}^1$                   | 0.123                                                         |
| <i>F</i> (000)                        | 448.0                                                         |
| Crystal size/mm <sup>3</sup>          | $0.359 \times 0.274 \times 0.133$                             |
| Radiation                             | Mo K $\alpha$ ( $\lambda = 0.71073$ )                         |
| $2\theta$ range for data collection/° | 4.752 to 62.052                                               |
| Index ranges                          | $-13 \le h \le 12, -15 \le k \le 15, -18 \le l \le 18$        |
| Reflections collected                 | 19804                                                         |
| Independent reflections               | 6081 [ $R_{\text{int}} = 0.0303, R_{\text{sigma}} = 0.0328$ ] |
| Data/restraints/parameters            | 6081/0/284                                                    |
| Goodness-of-fit on F <sup>2</sup>     | 1.085                                                         |

| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0402, wR_2 = 0.1060$ |
|---------------------------------------------|-------------------------------|
| Final R indexes [all data]                  | $R_1 = 0.0467, wR_2 = 0.1100$ |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.34/-0.27                    |

**Table S.2.** Fractional Atomic Coordinates  $(\times 10^4)$  and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **146b**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x           | У           | Z           | U(eq)    |
|------|-------------|-------------|-------------|----------|
| Si31 | 2484.7(3)   | 8754.1(3)   | 2548.1(3)   | 16.61(9) |
| C14  | 1136.7(13)  | 8151.3(12)  | 1210.4(9)   | 17.8(2)  |
| С9   | -187.8(13)  | 6850.7(12)  | 997.0(9)    | 17.4(2)  |
| N29  | -2303.6(13) | 3266.8(12)  | 2600.7(9)   | 28.0(2)  |
| C6   | 1196.8(13)  | 7135.5(12)  | 2736.5(10)  | 18.7(2)  |
| C23  | 2711.5(13)  | 10575.8(13) | 3697.0(9)   | 18.9(2)  |
| N30  | -2728.2(13) | 6366.3(12)  | -1463.7(9)  | 27.1(2)  |
| C7   | -144.1(13)  | 6267.4(12)  | 1842.0(9)   | 17.7(2)  |
| C17  | 4449.0(13)  | 8795.5(12)  | 2384.8(10)  | 18.1(2)  |
| C27  | 4234.8(17)  | 13169.4(14) | 4997.2(11)  | 29.7(3)  |
| C3   | -1140.1(14) | 4507.2(13)  | 2609.9(10)  | 21.6(2)  |
| C18  | 5509.8(14)  | 9046.6(13)  | 3294.6(10)  | 21.9(2)  |
| C10  | -1434.2(14) | 6225.0(12)  | 85.9(10)    | 20.1(2)  |
| C13  | 1157.8(14)  | 8767.0(13)  | 461.4(10)   | 21.3(2)  |
| C11  | -1422.7(14) | 6894.3(13)  | -633.7(10)  | 21.0(2)  |
| C5   | 1352.5(14)  | 6636.2(13)  | 3535.6(10)  | 22.2(2)  |
| C16  | -2604.7(18) | 6854.3(16)  | -2339.3(11) | 32.2(3)  |
| C12  | -76.3(15)   | 8160.4(13)  | -443.3(10)  | 22.9(2)  |
| C8   | -1292.2(14) | 4981.2(13)  | 1780.4(10)  | 20.6(2)  |
| C25  | 1478.3(17)  | 12090.9(16) | 4839.9(12)  | 33.4(3)  |
| C28  | 4134.7(14)  | 11817.8(13) | 4194.3(10)  | 23.2(2)  |

| C22 | 4867.9(14)  | 8468.2(14)  | 1331.8(10)  | 25.1(3) |
|-----|-------------|-------------|-------------|---------|
| C4  | 221.4(15)   | 5348.7(14)  | 3477.1(10)  | 23.4(2) |
| C26 | 2903.9(18)  | 13305.5(15) | 5313.7(11)  | 31.7(3) |
| C2  | -1909.3(17) | 2556.5(16)  | 3212.9(13)  | 35.1(3) |
| C19 | 6927.1(15)  | 8977.2(15)  | 3156.1(12)  | 28.4(3) |
| C1  | -3662.4(16) | 2360.0(15)  | 1680.9(12)  | 31.5(3) |
| C20 | 7317.2(16)  | 8661.3(16)  | 2101.0(12)  | 33.6(3) |
| C24 | 1384.6(15)  | 10741.8(15) | 4045.0(11)  | 27.3(3) |
| C21 | 6291.4(16)  | 8406.7(17)  | 1189.9(12)  | 33.7(3) |
| C15 | -4033.7(17) | 4992.7(15)  | -1701.5(13) | 34.5(3) |

**Table S.3.** Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **146b**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Si31 | 16.06(15)       | 16.55(15)       | 16.44(15)       | 7.01(12)        | 2.91(11)        | 6.63(12)        |
| C14  | 18.7(5)         | 17.3(5)         | 17.8(5)         | 7.0(4)          | 4.2(4)          | 8.9(4)          |
| С9   | 19.5(5)         | 17.3(5)         | 16.9(5)         | 6.7(4)          | 4.5(4)          | 10.2(4)         |
| N29  | 30.0(6)         | 23.6(5)         | 25.7(5)         | 14.4(4)         | 2.7(4)          | 3.3(4)          |
| C6   | 18.9(5)         | 18.6(5)         | 18.6(5)         | 8.1(4)          | 4.8(4)          | 8.2(4)          |
| C23  | 21.0(5)         | 20.3(5)         | 16.6(5)         | 8.1(4)          | 3.3(4)          | 10.1(4)         |
| N30  | 28.3(5)         | 27.4(5)         | 21.9(5)         | 10.8(4)         | -3.3(4)         | 9.3(5)          |
| C7   | 19.4(5)         | 17.6(5)         | 17.3(5)         | 7.5(4)          | 5.2(4)          | 9.3(4)          |
| C17  | 17.9(5)         | 14.9(5)         | 20.0(5)         | 6.8(4)          | 3.1(4)          | 6.7(4)          |
| C27  | 36.5(7)         | 19.4(6)         | 25.8(6)         | 7.1(5)          | 4.0(5)          | 8.2(5)          |
| C3   | 24.8(6)         | 18.9(5)         | 20.2(5)         | 9.2(4)          | 7.3(5)          | 7.9(5)          |
| C18  | 22.6(6)         | 22.4(6)         | 21.9(5)         | 10.8(5)         | 3.5(4)          | 9.9(5)          |
| C10  | 20.9(5)         | 17.4(5)         | 20.0(5)         | 7.0(4)          | 2.5(4)          | 7.8(4)          |
| C13  | 23.1(6)         | 18.5(5)         | 22.6(6)         | 10.0(4)         | 5.2(5)          | 8.3(5)          |

| C11 | 25.3(6) | 20.3(5) | 16.6(5) | 5.3(4)  | 1.4(4)   | 12.4(5) |
|-----|---------|---------|---------|---------|----------|---------|
| C5  | 22.3(6) | 24.0(6) | 18.6(5) | 9.4(5)  | 2.7(4)   | 8.5(5)  |
| C16 | 42.1(8) | 30.7(7) | 23.4(6) | 12.0(5) | -3.3(6)  | 16.2(6) |
| C12 | 30.4(6) | 21.6(6) | 20.7(5) | 11.7(5) | 4.4(5)   | 12.8(5) |
| C8  | 21.2(5) | 19.4(5) | 18.9(5) | 7.9(4)  | 2.8(4)   | 7.2(5)  |
| C25 | 37.9(7) | 40.0(8) | 30.3(7) | 12.4(6) | 11.5(6)  | 27.8(7) |
| C28 | 23.9(6) | 21.2(6) | 23.0(6) | 9.0(5)  | 5.5(5)   | 9.0(5)  |
| C22 | 23.0(6) | 29.7(6) | 18.8(5) | 6.9(5)  | 2.9(5)   | 11.9(5) |
| C4  | 28.4(6) | 24.6(6) | 19.2(5) | 12.5(5) | 5.9(5)   | 10.4(5) |
| C26 | 50.3(8) | 25.5(6) | 21.7(6) | 6.4(5)  | 7.8(6)   | 23.2(6) |
| C2  | 36.3(7) | 31.9(7) | 36.0(7) | 24.2(6) | 4.2(6)   | 3.9(6)  |
| C19 | 24.3(6) | 28.7(6) | 31.1(7) | 10.8(5) | -0.8(5)  | 13.7(5) |
| C1  | 30.3(7) | 26.2(6) | 30.5(7) | 15.7(5) | 2.1(5)   | 1.7(5)  |
| C20 | 22.8(6) | 36.3(7) | 36.2(7) | 6.6(6)  | 5.9(5)   | 17.8(6) |
| C24 | 22.6(6) | 29.7(6) | 26.8(6) | 8.5(5)  | 3.5(5)   | 13.1(5) |
| C21 | 28.4(7) | 40.2(8) | 25.1(6) | 5.1(6)  | 9.4(5)   | 17.3(6) |
| C15 | 32.9(7) | 26.2(7) | 33.3(7) | 10.8(6) | -10.2(6) | 5.9(6)  |

## Table S.4. Bond Lengths for 146b.

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å   |
|------|------|------------|------|------|------------|
| Si31 | C14  | 1.8526(12) | C7   | C8   | 1.3848(16) |
| Si31 | C6   | 1.8514(12) | C17  | C18  | 1.3997(16) |
| Si31 | C23  | 1.8735(12) | C17  | C22  | 1.3939(16) |
| Si31 | C17  | 1.8671(12) | C27  | C28  | 1.3887(17) |
| C14  | C9   | 1.4098(16) | C27  | C26  | 1.383(2)   |
| C14  | C13  | 1.3941(16) | C3   | C8   | 1.4052(16) |
| С9   | C7   | 1.4913(15) | C3   | C4   | 1.4038(17) |
| С9   | C10  | 1.3896(16) | C18  | C19  | 1.3874(17) |

| N29 | C3  | 1.3838(15) | C10 | C11 | 1.4065(16) |
|-----|-----|------------|-----|-----|------------|
| N29 | C2  | 1.4440(17) | C13 | C12 | 1.3806(17) |
| N29 | C1  | 1.4383(17) | C11 | C12 | 1.4060(17) |
| C6  | C7  | 1.4100(16) | C5  | C4  | 1.3809(17) |
| C6  | C5  | 1.3893(16) | C25 | C26 | 1.379(2)   |
| C23 | C28 | 1.3917(17) | C25 | C24 | 1.3855(18) |
| C23 | C24 | 1.4024(16) | C22 | C21 | 1.3908(18) |
| N30 | C11 | 1.3841(15) | C19 | C20 | 1.386(2)   |
| N30 | C16 | 1.4407(17) | C20 | C21 | 1.379(2)   |
| N30 | C15 | 1.4423(17) |     |     |            |

## Table S.5. Bond Angles for 146b.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C14  | Si31 | C23  | 112.68(5)  | C8   | C7   | C6   | 121.09(10) |
| C14  | Si31 | C17  | 115.18(5)  | C18  | C17  | Si31 | 121.14(9)  |
| C6   | Si31 | C14  | 91.83(5)   | C22  | C17  | Si31 | 121.21(9)  |
| C6   | Si31 | C23  | 113.97(5)  | C22  | C17  | C18  | 117.48(10) |
| C6   | Si31 | C17  | 112.72(5)  | C26  | C27  | C28  | 120.11(12) |
| C17  | Si31 | C23  | 109.63(5)  | N29  | C3   | C8   | 121.68(11) |
| C9   | C14  | Si31 | 109.49(8)  | N29  | C3   | C4   | 120.13(11) |
| C13  | C14  | Si31 | 132.95(9)  | C4   | C3   | C8   | 118.18(11) |
| C13  | C14  | C9   | 117.45(10) | C19  | C18  | C17  | 121.34(11) |
| C14  | C9   | C7   | 114.59(10) | C9   | C10  | C11  | 120.74(11) |
| C10  | C9   | C14  | 121.09(10) | C12  | C13  | C14  | 122.01(11) |
| C10  | C9   | C7   | 124.28(10) | N30  | C11  | C10  | 120.83(11) |
| C3   | N29  | C2   | 118.79(11) | N30  | C11  | C12  | 121.15(11) |
| C3   | N29  | C1   | 120.18(11) | C12  | C11  | C10  | 117.93(11) |
| C1   | N29  | C2   | 116.47(11) | C4   | C5   | C6   | 121.51(11) |

| C7  | C6  | Si31 | 109.64(8)  | C13 | C12 | C11 | 120.66(11) |
|-----|-----|------|------------|-----|-----|-----|------------|
| C5  | C6  | Si31 | 132.42(9)  | C7  | C8  | C3  | 120.49(11) |
| C5  | C6  | C7   | 117.88(10) | C26 | C25 | C24 | 119.87(12) |
| C28 | C23 | Si31 | 123.28(9)  | C27 | C28 | C23 | 121.32(12) |
| C28 | C23 | C24  | 117.32(11) | C21 | C22 | C17 | 121.42(12) |
| C24 | C23 | Si31 | 119.32(9)  | C5  | C4  | C3  | 120.80(11) |
| C11 | N30 | C16  | 119.94(11) | C25 | C26 | C27 | 119.85(12) |
| C11 | N30 | C15  | 119.43(11) | C20 | C19 | C18 | 119.88(12) |
| C16 | N30 | C15  | 117.13(11) | C21 | C20 | C19 | 119.93(12) |
| C6  | C7  | C9   | 114.39(10) | C25 | C24 | C23 | 121.52(12) |
| C8  | C7  | C9   | 124.51(10) | C20 | C21 | C22 | 119.94(12) |

**Table S.6.** Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **146b**.

| Atom | x        | У        | Z        | U(eq) |
|------|----------|----------|----------|-------|
| H8AA | 5198.41  | 13984.42 | 5322.58  | 36    |
| H0BA | 5259.54  | 9264.35  | 4006.49  | 26    |
| H1BA | -2285.6  | 5353.83  | -49.46   | 24    |
| H2BA | 2029.71  | 9612.02  | 574.57   | 26    |
| H4BA | 2238.74  | 7181.53  | 4123.26  | 27    |
| HA   | -2157.99 | 7915.9   | -1991.95 | 48    |
| HB   | -3623.34 | 6462.62  | -2799.43 | 48    |
| HC   | -1950.45 | 6509.41  | -2809.85 | 48    |
| H5BA | -16.43   | 8593.65  | -931.66  | 27    |
| H6BA | -2170.35 | 4427.08  | 1185.58  | 25    |
| H7BA | 581.74   | 12177.51 | 5053.62  | 40    |
| H8BA | 5036.72  | 11741.11 | 3984.74  | 28    |
| H9BA | 4180.65  | 8286.92  | 710.7    | 30    |
| H0CA | 363.25   | 5035.29  | 4018.69  | 28    |

| H1CA | 2969.87  | 14213.68 | 5844.78  | 38 |
|------|----------|----------|----------|----|
| H2CA | -995.82  | 2414.84  | 3019.64  | 53 |
| H2CB | -2762.59 | 1614.23  | 3007.51  | 53 |
| H2CC | -1707.46 | 3168.23  | 4018.5   | 53 |
| H3CA | 7614.15  | 9142.5   | 3770.2   | 34 |
| H4CA | -4077.6  | 2976.74  | 1552.27  | 47 |
| H4CB | -4435.61 | 1672.27  | 1875.98  | 47 |
| H4CC | -3381.07 | 1825.71  | 1000.68  | 47 |
| H5CA | 8269.64  | 8620.92  | 2007.47  | 40 |
| H6CA | 419.51   | 9927.44  | 3735.15  | 33 |
| H7CA | 6551.43  | 8194.21  | 481.32   | 40 |
| H8CA | -3707.71 | 4204.17  | -1962.63 | 52 |
| H8CB | -4850.85 | 4789.2   | -2280.89 | 52 |
| H8CC | -4411.7  | 5070.41  | -1019.4  | 52 |

### S.2 X-ray Structure of Compound 184a

A suitable crystal of  $C_{28}H_{28}N_2Si$ , phenoxasilin **184a** was selected, and its X-ray diffraction data were collected on a Rigaku Saturn70 CCD area detector with graphite monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71070$  Å). The crystal was kept at 123 K during data collection. The data were collected using  $\omega$  scan in the  $\theta$  range of  $3.154 \le 2\theta \le 62.02$  deg. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods,<sup>[115]</sup> and expanded using Fourier techniques.<sup>[116]</sup> Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F<sup>2</sup> was based on 14757 observed reflections and 585 variable parameters. Neutral atom scattering factors were taken from Cromer and Waber.<sup>[117]</sup> All calculations were performed using the Olex-2 crystallographic software package except for refinement,<sup>[118]</sup> which was performed using SHELXL-97.5 Details<sup>[119]</sup> of final refinement as well as the bond lengths and angles are summarized in the following Tables together with the numbering scheme employed, which were drawn with ORTEP at 50% probability ellipsoid.



Table S.7. Crystal data and structure refinement for 184a.

| Identification code           | 184a                          |
|-------------------------------|-------------------------------|
| Empirical formula             | $C_{28}H_{28}N_2OSi$          |
| Formula weight                | 436.61                        |
| Temperature/K                 | 123                           |
| Crystal system                | triclinic                     |
| Space group                   | <i>P</i> -1                   |
| a/Å                           | 12.4645(5)                    |
| b/Å                           | 12.9987(5)                    |
| c/Å                           | 16.7305(5)                    |
| $lpha/^{\circ}$               | 83.723(3)                     |
| $eta /^{\circ}$               | 73.112(3)                     |
| $\gamma/^{\circ}$             | 86.634(3)                     |
| <i>Volume</i> /Å <sup>3</sup> | 2577.23(17)                   |
| Ζ                             | 5                             |
| Dcalc g/cm <sup>3</sup>       | 1.407                         |
| $\mu/\text{mm}^{-1}$          | 0.140                         |
| <i>F</i> (000)                | 1160.0                        |
| Crystal size/mm <sup>3</sup>  | $0.4 \times 0.25 \times 0.24$ |

| Radiation                                   | Mo K <sub><math>\alpha</math></sub> ( $\lambda = 0.71073$ ) |
|---------------------------------------------|-------------------------------------------------------------|
| $2\theta$ range for data collection/°       | 3.154 to 62.02                                              |
| Index ranges                                | $-17 \le h \le 17, -18 \le k \le 18, -24 \le l \le 23$      |
| Reflections collected                       | 45536                                                       |
| Independent reflections                     | 14757 [ $R_{int} = 0.0927, R_{sigma} = 0.0651$ ]            |
| Data/restraints/parameters                  | 14757/0/585                                                 |
| Goodness-of-fit on F <sup>2</sup>           | 1.054                                                       |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0867, wR_2 = 0.2276$                               |
| Final R indexes [all data]                  | $R_1 = 0.1064, wR_2 = 0.2547$                               |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.51/-1.08                                                  |

**Table S.8.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **184a**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x           | У          | $\boldsymbol{z}$ | U(eq)     |
|------|-------------|------------|------------------|-----------|
| Si2  | 6530.7(5)   | 4007.1(4)  | 7117.8(3)        | 21.50(14) |
| Si1  | 8719.6(5)   | 2527.8(4)  | 2672.9(3)        | 21.71(14) |
| 01   | 11029.7(14) | 1998.7(13) | 1340.2(10)       | 34.1(4)   |
| 02   | 7428.1(17)  | 2711.6(14) | 8522.2(11)       | 40.4(4)   |
| C51  | 6730.7(17)  | 5400.9(14) | 6699.4(12)       | 21.8(4)   |
| N1   | 12675.5(18) | -218.4(16) | 3117.5(15)       | 39.5(5)   |
| C1   | 9944.8(17)  | 1755.6(15) | 2834.2(13)       | 23.5(4)   |
| C17  | 7427.0(17)  | 1732.0(14) | 2994.8(13)       | 24.0(4)   |
| C24  | 8381.0(17)  | 3676.4(14) | 3299.1(12)       | 22.8(4)   |
| C37  | 7873.9(18)  | 3284.4(16) | 7010.6(14)       | 26.7(4)   |
| C45  | 5624.9(17)  | 3434.2(14) | 6569.2(12)       | 22.3(4)   |
| C56  | 5809.0(19)  | 6018.2(16) | 6611.0(14)       | 27.8(4)   |
| C46  | 5879.7(18)  | 3579.4(16) | 5695.5(13)       | 27.1(4)   |
| C23  | 7378.2(18)  | 4241.0(16) | 3353.6(13)       | 26.9(4)   |
| C6   | 10878.2(18) | 1574.7(16) | 2161.6(13)       | 26.0(4)   |
| C22  | 6902.8(18)  | 1463.2(15) | 3845.6(14)       | 27.9(4)   |
| C52  | 7751.7(19)  | 5882.2(16) | 6542.7(15)       | 30.2(4)   |
| C55  | 5885(2)     | 7082.6(17) | 6402.3(15)       | 31.6(5)   |
| C50  | 4726.4(18)  | 2809.5(15) | 7008.2(13)       | 27.1(4)   |
| N2   | 10325(2)    | 3775(2)    | -1080.2(14)      | 51.7(6)   |
| C48  | 4383(2)     | 2477.3(17) | 5718.0(15)       | 32.1(5)   |
| C29  | 5880.9(19)  | 3834.9(16) | 8255.9(13)       | 27.9(4)   |
| C9   | 9185.4(18)  | 2892.1(16) | 1534.4(13)       | 27.1(4)   |
| C49  | 4108(2)     | 2331.2(16) | 6583.2(15)       | 31.5(5)   |

| C259120(2)4032.6(17)3690.1(15)31.3(4)C29982.0(18)1241.9(16)3610.8(14)27.8(4)C388120(2)2743.3(16)7705.0(15)31.1(5)C1010245.3(19)2608.7(16)1045.0(13)28.7(4)C475269(2)3106.1(18)5272.4(14)32.2(5)C287124(2)5137.1(17)3767.0(15)32.0(5)C216001(2)804.1(17)4110.2(16)34.5(5)C411787.0(19)418.3(16)3026.9(16)30.9(4)C187002(2)1325.2(18)2413.7(16)32.3(5)C428699.1(19)3204.9(18)6232.4(16)33.3(5)C537839(2)6950.9(18)6319.7(17)37.0(5)C1110649(2)2910.9(19)191.2(15)35.3(5)C304828(2)4270.9(19)8653.9(15)36.7(5)C546896(2)7547.1(17)6260.7(15)33.9(5)C148521(2)3506.8(19)1098.8(15)35.2(5)C129959(2)3509.4(19)-231.5(15)38.6(5)C196088(2)672.5(19)2673.1(18)38.4(5)C205592(2)410.8(17)3521.4(19)38.5(6)N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C68875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)<                                                                                                                                                                                                                                                                                                                                                                                                                                           | C3  | 10854.9(19) | 593.9(16)  | 3723.1(15)  | 30.2(4)  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|------------|-------------|----------|
| C29982.0(18)1241.9(16) $3610.8(14)$ 27.8(4)C38 $8120(2)$ 2743.3(16)7705.0(15) $31.1(5)$ C10 $10245.3(19)$ $2608.7(16)$ $1045.0(13)$ $28.7(4)$ C47 $5269(2)$ $3106.1(18)$ $5272.4(14)$ $32.2(5)$ C28 $7124(2)$ $5137.1(17)$ $3767.0(15)$ $32.0(5)$ C21 $6001(2)$ $804.1(17)$ $4110.2(16)$ $34.5(5)$ C4 $11787.0(19)$ $418.3(16)$ $3026.9(16)$ $30.9(4)$ C18 $7002(2)$ $1325.2(18)$ $2413.7(16)$ $32.3(5)$ C42 $8699.1(19)$ $3204.9(18)$ $6232.4(16)$ $33.3(5)$ C53 $7839(2)$ $6950.9(18)$ $6319.7(17)$ $37.0(5)$ C11 $10649(2)$ $2910.9(19)$ $191.2(15)$ $35.3(5)$ C30 $4828(2)$ $4270.9(19)$ $8653.9(15)$ $36.7(5)$ C54 $6896(2)$ $7547.1(17)$ $6260.7(15)$ $33.9(5)$ C14 $8521(2)$ $3509.4(19)$ $-231.5(15)$ $38.6(5)$ C12 $9959(2)$ $3509.4(19)$ $-231.5(15)$ $38.6(5)$ C19 $6088(2)$ $672.5(19)$ $2673.1(18)$ $38.4(5)$ C34 $6393(2)$ $3204.2(17)$ $8780.3(14)$ $32.2(5)$ C20 $5592(2)$ $410.8(17)$ $3521.4(19)$ $38.5(6)$ N4 $10900(2)$ $1522.0(19)$ $6790(2)$ $58.8(8)$ C5 $11782.2(19)$ $923.9(17)$ $2245.5(15)$ $31.4(5)$ C4 $897(2)$ $205.5(19)$ $916$                                                                                                                                                                                                                                        | C25 | 9120(2)     | 4032.6(17) | 3690.1(15)  | 31.3(4)  |
| C38         8120(2)         2743.3(16)         7705.0(15)         31.1(5)           C10         10245.3(19)         2608.7(16)         1045.0(13)         28.7(4)           C47         5269(2)         3106.1(18)         5272.4(14)         32.2(5)           C28         7124(2)         5137.1(17)         3767.0(15)         32.0(5)           C21         6001(2)         804.1(17)         4110.2(16)         34.5(5)           C4         11787.0(19)         418.3(16)         3026.9(16)         30.9(4)           C18         7002(2)         1325.2(18)         2413.7(16)         32.3(5)           C42         8699.1(19)         3204.9(18)         6232.4(16)         33.3(5)           C53         7839(2)         6950.9(18)         6319.7(17)         37.0(5)           C11         10649(2)         2910.9(19)         19.1.2(15)         35.3(5)           C54         6896(2)         7547.1(17)         6260.7(15)         33.9(5)           C14         8521(2)         3506.8(19)         1098.8(15)         35.2(5)           C12         9959(2)         3509.4(19)         -231.5(15)         38.6(5)           C13         8521(2)         320.42(17)         8780.3(14)         32.2(5)                                                                                | C2  | 9982.0(18)  | 1241.9(16) | 3610.8(14)  | 27.8(4)  |
| C10         10245.3(19)         2608.7(16)         1045.0(13)         28.7(4)           C47         5269(2)         3106.1(18)         5272.4(14)         32.2(5)           C28         7124(2)         5137.1(17)         3767.0(15)         32.0(5)           C21         6001(2)         804.1(17)         4110.2(16)         34.5(5)           C4         11787.0(19)         418.3(16)         3026.9(16)         30.9(4)           C18         7002(2)         1325.2(18)         2413.7(16)         32.3(5)           C42         8699.1(19)         3204.9(18)         6232.4(16)         33.3(5)           C53         7839(2)         6950.9(18)         6319.7(17)         37.0(5)           C11         10649(2)         2910.9(19)         191.2(15)         35.3(5)           C30         4828(2)         4270.9(19)         8653.9(15)         35.2(5)           C14         8521(2)         3506.8(19)         1098.8(15)         35.2(5)           C14         8521(2)         3509.4(19)         -231.5(15)         38.6(5)           C19         6088(2)         672.5(19)         2673.1(18)         38.4(5)           C34         6393(2)         3204.2(17)         8780.3(14)         32.2(5)                                                                                  | C38 | 8120(2)     | 2743.3(16) | 7705.0(15)  | 31.1(5)  |
| C47         5269(2)         3106.1(18)         5272.4(14)         32.2(5)           C28         7124(2)         5137.1(17)         3767.0(15)         32.0(5)           C21         6001(2)         804.1(17)         4110.2(16)         34.5(5)           C4         11787.0(19)         418.3(16)         3026.9(16)         30.9(4)           C18         7002(2)         1325.2(18)         2413.7(16)         32.3(5)           C42         8699.1(19)         3204.9(18)         6319.7(17)         37.0(5)           C11         10649(2)         2910.9(19)         191.2(15)         35.3(5)           C30         4828(2)         4270.9(19)         8653.9(15)         36.7(5)           C54         6896(2)         7547.1(17)         6260.7(15)         33.9(5)           C14         8521(2)         3506.8(19)         1098.8(15)         35.2(5)           C12         9959(2)         3509.4(19)         -231.5(15)         38.6(5)           C19         6088(2)         672.5(19)         2673.1(18)         88.4(5)           C34         6393(2)         3204.2(17)         8780.3(14)         32.2(5)           C40         990(2)         1522.0(19)         673.1(18)         36.1(5)                                                                                        | C10 | 10245.3(19) | 2608.7(16) | 1045.0(13)  | 28.7(4)  |
| C28         7124(2)         5137.1(17)         3767.0(15)         32.0(5)           C21         6001(2)         804.1(17)         4110.2(16)         34.5(5)           C4         11787.0(19)         418.3(16)         3026.9(16)         30.9(4)           C18         7002(2)         1325.2(18)         2413.7(16)         32.3(5)           C42         8699.1(19)         3204.9(18)         6232.4(16)         33.3(5)           C53         7839(2)         6950.9(18)         6319.7(17)         37.0(5)           C11         10649(2)         2910.9(19)         191.2(15)         35.3(5)           C30         4828(2)         4270.9(19)         8653.9(15)         36.7(5)           C54         6896(2)         7547.1(17)         6260.7(15)         33.9(5)           C14         8521(2)         3506.8(19)         1098.8(15)         35.2(5)           C12         9959(2)         3204.2(17)         8780.3(14)         32.2(5)           C14         8521(2)         410.8(17)         3521.4(19)         38.5(6)           C34         6393(2)         3204.2(17)         8780.3(14)         32.2(5)           C40         9100(2)         1522.0(19)         6790(2)         58.8(8)                                                                                         | C47 | 5269(2)     | 3106.1(18) | 5272.4(14)  | 32.2(5)  |
| C21         6001(2)         804.1(17)         4110.2(16)         34.5(5)           C4         11787.0(19)         418.3(16)         3026.9(16)         30.9(4)           C18         7002(2)         1325.2(18)         2413.7(16)         32.3(5)           C42         8699.1(19)         3204.9(18)         6232.4(16)         33.3(5)           C53         7839(2)         6950.9(18)         6319.7(17)         37.0(5)           C11         10649(2)         2910.9(19)         191.2(15)         35.3(5)           C30         4828(2)         4270.9(19)         8653.9(15)         36.7(5)           C54         6896(2)         7547.1(17)         6260.7(15)         33.9(5)           C14         8521(2)         3506.8(19)         1098.8(15)         35.2(5)           C12         9959(2)         3509.4(19)         -231.5(15)         38.6(5)           C14         8521(2)         672.5(19)         2673.1(18)         384.4(5)           C34         6393(2)         3204.2(17)         8780.3(14)         32.2(5)           C20         5592(2)         410.8(17)         3521.4(19)         38.5(6)           N4         10900(2)         1522.0(19)         6790(2)         58.8(8)                                                                                         | C28 | 7124(2)     | 5137.1(17) | 3767.0(15)  | 32.0(5)  |
| C4         11787.0(19)         418.3(16)         3026.9(16)         30.9(4)           C18         7002(2)         1325.2(18)         2413.7(16)         32.3(5)           C42         8699.1(19)         3204.9(18)         6232.4(16)         33.3(5)           C53         7839(2)         6950.9(18)         6319.7(17)         37.0(5)           C11         10649(2)         2910.9(19)         191.2(15)         35.3(5)           C30         4828(2)         4270.9(19)         8653.9(15)         36.7(5)           C54         6896(2)         7547.1(17)         6260.7(15)         33.9(5)           C14         8521(2)         3506.8(19)         1098.8(15)         35.2(5)           C12         9959(2)         3509.4(19)         -231.5(15)         38.6(5)           C14         8521(2)         672.5(19)         2673.1(18)         38.4(5)           C34         6393(2)         3204.2(17)         8780.3(14)         32.2(5)           C20         5592(2)         410.8(17)         3521.4(19)         38.5(6)           N4         10900(2)         1522.0(19)         6790(2)         58.8(8)           C5         11782.2(19)         923.9(17)         2245.5(15)         31.4(5) <td>C21</td> <td>6001(2)</td> <td>804.1(17)</td> <td>4110.2(16)</td> <td>34.5(5)</td> | C21 | 6001(2)     | 804.1(17)  | 4110.2(16)  | 34.5(5)  |
| C18         7002(2)         1325.2(18)         2413.7(16)         32.3(5)           C42         8699.1(19)         3204.9(18)         6232.4(16)         33.3(5)           C53         7839(2)         6950.9(18)         6319.7(17)         37.0(5)           C11         10649(2)         2910.9(19)         191.2(15)         35.3(5)           C30         4828(2)         4270.9(19)         8653.9(15)         36.7(5)           C54         6896(2)         7547.1(17)         6260.7(15)         33.9(5)           C14         8521(2)         3506.8(19)         1098.8(15)         35.2(5)           C12         9959(2)         3509.4(19)         -231.5(15)         38.6(5)           C19         6088(2)         672.5(19)         2673.1(18)         38.4(5)           C34         6393(2)         3204.2(17)         8780.3(14)         32.2(5)           C40         5592(2)         410.8(17)         3521.4(19)         38.5(6)           N4         10900(2)         1522.0(19)         6790(2)         58.8(8)           C5         11782.2(19)         923.9(17)         2245.5(15)         31.4(5)           C46         8875(2)         4925.6(18)         4106.6(16)         36.1(5)                                                                                         | C4  | 11787.0(19) | 418.3(16)  | 3026.9(16)  | 30.9(4)  |
| C42         8699.1(19)         3204.9(18)         6232.4(16)         33.3(5)           C53         7839(2)         6950.9(18)         6319.7(17)         37.0(5)           C11         10649(2)         2910.9(19)         191.2(15)         35.3(5)           C30         4828(2)         4270.9(19)         8653.9(15)         36.7(5)           C54         6896(2)         7547.1(17)         6260.7(15)         33.9(5)           C14         8521(2)         3506.8(19)         1098.8(15)         35.2(5)           C12         9959(2)         3509.4(19)         -231.5(15)         38.6(5)           C19         6088(2)         672.5(19)         2673.1(18)         38.4(5)           C34         6393(2)         3204.2(17)         8780.3(14)         32.2(5)           C20         5592(2)         410.8(17)         3521.4(19)         38.5(6)           N4         10900(2)         1522.0(19)         6790(2)         58.8(8)           C5         11782.2(19)         923.9(17)         2245.5(15)         31.4(5)           C42         8875(2)         4925.6(18)         4106.6(16)         36.1(5)           C7         12614(2)         -805.5(19)         3916(2)         42.6(6)                                                                                            | C18 | 7002(2)     | 1325.2(18) | 2413.7(16)  | 32.3(5)  |
| C537839(2)6950.9(18)6319.7(17)37.0(5)C1110649(2)2910.9(19)191.2(15)35.3(5)C304828(2)4270.9(19)8653.9(15)36.7(5)C546896(2)7547.1(17)6260.7(15)33.9(5)C148521(2)3506.8(19)1098.8(15)35.2(5)C129959(2)3509.4(19)-231.5(15)38.6(5)C196088(2)672.5(19)2673.1(18)38.4(5)C346393(2)3204.2(17)8780.3(14)32.2(5)C205592(2)410.8(17)3521.4(19)38.5(6)N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C268875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C335884(3)3004(2)9639.2(15)43.8(6)C344297(3)4075(2)9502.8(16)45.4(6)C314297(3)4075(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C42 | 8699.1(19)  | 3204.9(18) | 6232.4(16)  | 33.3(5)  |
| C1110649(2)2910.9(19)191.2(15)35.3(5)C304828(2)4270.9(19)8653.9(15)36.7(5)C546896(2)7547.1(17)6260.7(15)33.9(5)C148521(2)3506.8(19)1098.8(15)35.2(5)C129959(2)3509.4(19)-231.5(15)38.6(5)C196088(2)672.5(19)2673.1(18)38.4(5)C346393(2)3204.2(17)8780.3(14)32.2(5)C205592(2)410.8(17)3521.4(19)38.5(6)N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C268875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C335884(3)3004(2)9639.2(15)43.8(6)C344297(3)4075(2)9502.8(16)45.4(6)C314297(3)4075(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)6                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C53 | 7839(2)     | 6950.9(18) | 6319.7(17)  | 37.0(5)  |
| C304828(2)4270.9(19)8653.9(15)36.7(5)C546896(2)7547.1(17)6260.7(15)33.9(5)C148521(2)3506.8(19)1098.8(15)35.2(5)C129959(2)3509.4(19)-231.5(15)38.6(5)C196088(2)672.5(19)2673.1(18)38.4(5)C346393(2)3204.2(17)8780.3(14)32.2(5)C205592(2)410.8(17)3521.4(19)38.5(6)N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C268875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C335884(3)3004(2)9639.2(15)43.8(6)C314297(3)4075(2)9502.8(16)45.4(6)C314297(3)4075(2)9502.8(16)45.4(6)C31422(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C11 | 10649(2)    | 2910.9(19) | 191.2(15)   | 35.3(5)  |
| C546896(2)7547.1(17)6260.7(15)33.9(5)C148521(2)3506.8(19)1098.8(15)35.2(5)C129959(2)3509.4(19)-231.5(15)38.6(5)C196088(2)672.5(19)2673.1(18)38.4(5)C346393(2)3204.2(17)8780.3(14)32.2(5)C205592(2)410.8(17)3521.4(19)38.5(6)N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C268875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C409912(2)2089.6(18)6857(2)43.0(6)C335884(3)3004(2)9639.2(15)43.8(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C30 | 4828(2)     | 4270.9(19) | 8653.9(15)  | 36.7(5)  |
| C148521(2)3506.8(19)1098.8(15)35.2(5)C129959(2)3509.4(19)-231.5(15)38.6(5)C196088(2)672.5(19)2673.1(18)38.4(5)C346393(2)3204.2(17)8780.3(14)32.2(5)C205592(2)410.8(17)3521.4(19)38.5(6)N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C268875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C409912(2)2089.6(18)6857(2)43.0(6)C335884(3)3004(2)9639.2(15)43.8(6)C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12) <td>C54</td> <td>6896(2)</td> <td>7547.1(17)</td> <td>6260.7(15)</td> <td>33.9(5)</td>                                                                                                                                                                                                                                                                                                                                                                             | C54 | 6896(2)     | 7547.1(17) | 6260.7(15)  | 33.9(5)  |
| C129959(2)3509.4(19)-231.5(15)38.6(5)C196088(2)672.5(19)2673.1(18)38.4(5)C346393(2)3204.2(17)8780.3(14)32.2(5)C205592(2)410.8(17)3521.4(19)38.5(6)N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C268875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C409912(2)2089.6(18)6857(2)43.0(6)C335884(3)3004(2)9639.2(15)43.8(6)C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C14 | 8521(2)     | 3506.8(19) | 1098.8(15)  | 35.2(5)  |
| C19 $6088(2)$ $672.5(19)$ $2673.1(18)$ $38.4(5)$ C34 $6393(2)$ $3204.2(17)$ $8780.3(14)$ $32.2(5)$ C20 $5592(2)$ $410.8(17)$ $3521.4(19)$ $38.5(6)$ N4 $10900(2)$ $1522.0(19)$ $6790(2)$ $58.8(8)$ C5 $11782.2(19)$ $923.9(17)$ $2245.5(15)$ $31.4(5)$ C26 $8875(2)$ $4925.6(18)$ $4106.6(16)$ $36.1(5)$ C7 $12614(2)$ $-805.5(19)$ $3916(2)$ $42.6(6)$ N3 $4280(3)$ $3160(3)$ $10849.8(15)$ $70.9(9)$ C27 $7878(2)$ $5477.0(17)$ $4142.7(15)$ $35.0(5)$ C41 $9687(2)$ $2625.9(19)$ $6146(2)$ $41.8(6)$ C40 $9912(2)$ $2089.6(18)$ $6857(2)$ $43.0(6)$ C33 $5884(3)$ $3004(2)$ $9639.2(15)$ $43.8(6)$ C13 $8885(2)$ $3809(2)$ $249.7(16)$ $40.6(6)$ C31 $4297(3)$ $4075(2)$ $9502.8(16)$ $45.4(6)$ C32 $4822(3)$ $3411(2)$ $10011.2(15)$ $48.6(7)$ C16 $9653(3)$ $4481(2)$ $-1486.0(18)$ $56.6(8)$ C15 $11473(3)$ $3553(3)$ $-1553.0(18)$ $61.2(9)$ C44 $11596(2)$ $1277(2)$ $5974(3)$ $68.6(12)$ C43 $11038(3)$ $853(2)$ $7510(3)$ $68.1(11)$ C35 $3200(4)$ $3645(3)$ $11236(2)$ $74.4(12)$                                                                                                                                                                                                                                                                                                          | C12 | 9959(2)     | 3509.4(19) | -231.5(15)  | 38.6(5)  |
| C346393(2)3204.2(17)8780.3(14)32.2(5)C205592(2)410.8(17)3521.4(19)38.5(6)N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C268875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C409912(2)2089.6(18)6857(2)43.0(6)C335884(3)3004(2)9639.2(15)43.8(6)C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C19 | 6088(2)     | 672.5(19)  | 2673.1(18)  | 38.4(5)  |
| C20 $5592(2)$ $410.8(17)$ $3521.4(19)$ $38.5(6)$ N4 $10900(2)$ $1522.0(19)$ $6790(2)$ $58.8(8)$ C5 $11782.2(19)$ $923.9(17)$ $2245.5(15)$ $31.4(5)$ C26 $8875(2)$ $4925.6(18)$ $4106.6(16)$ $36.1(5)$ C7 $12614(2)$ $-805.5(19)$ $3916(2)$ $42.6(6)$ N3 $4280(3)$ $3160(3)$ $10849.8(15)$ $70.9(9)$ C27 $7878(2)$ $5477.0(17)$ $4142.7(15)$ $35.0(5)$ C41 $9687(2)$ $2625.9(19)$ $6146(2)$ $41.8(6)$ C40 $9912(2)$ $2089.6(18)$ $6857(2)$ $43.0(6)$ C39 $9115(2)$ $2155.8(18)$ $7637(2)$ $42.5(6)$ C33 $5884(3)$ $3004(2)$ $9639.2(15)$ $43.8(6)$ C13 $8885(2)$ $3809(2)$ $249.7(16)$ $40.6(6)$ C31 $4297(3)$ $4075(2)$ $9502.8(16)$ $45.4(6)$ C32 $4822(3)$ $3411(2)$ $10011.2(15)$ $48.6(7)$ C16 $9653(3)$ $4481(2)$ $-1486.0(18)$ $56.6(8)$ C15 $11473(3)$ $3553(3)$ $-1553.0(18)$ $61.2(9)$ C44 $11596(2)$ $1277(2)$ $5974(3)$ $68.6(12)$ C43 $11038(3)$ $853(2)$ $7510(3)$ $68.1(11)$ C35 $3200(4)$ $3645(3)$ $11236(2)$ $74.4(12)$                                                                                                                                                                                                                                                                                                                                                              | C34 | 6393(2)     | 3204.2(17) | 8780.3(14)  | 32.2(5)  |
| N410900(2)1522.0(19)6790(2)58.8(8)C511782.2(19)923.9(17)2245.5(15)31.4(5)C268875(2)4925.6(18)4106.6(16)36.1(5)C712614(2)-805.5(19)3916(2)42.6(6)N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C409912(2)2089.6(18)6857(2)43.0(6)C399115(2)2155.8(18)7637(2)42.5(6)C335884(3)3004(2)9639.2(15)43.8(6)C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C20 | 5592(2)     | 410.8(17)  | 3521.4(19)  | 38.5(6)  |
| C5 $11782.2(19)$ $923.9(17)$ $2245.5(15)$ $31.4(5)$ C26 $8875(2)$ $4925.6(18)$ $4106.6(16)$ $36.1(5)$ C7 $12614(2)$ $-805.5(19)$ $3916(2)$ $42.6(6)$ N3 $4280(3)$ $3160(3)$ $10849.8(15)$ $70.9(9)$ C27 $7878(2)$ $5477.0(17)$ $4142.7(15)$ $35.0(5)$ C41 $9687(2)$ $2625.9(19)$ $6146(2)$ $41.8(6)$ C40 $9912(2)$ $2089.6(18)$ $6857(2)$ $43.0(6)$ C39 $9115(2)$ $2155.8(18)$ $7637(2)$ $42.5(6)$ C33 $5884(3)$ $3004(2)$ $9639.2(15)$ $43.8(6)$ C13 $8885(2)$ $3809(2)$ $249.7(16)$ $40.6(6)$ C31 $4297(3)$ $4075(2)$ $9502.8(16)$ $45.4(6)$ C8 $13515(2)$ $-523(2)$ $2379(2)$ $44.1(6)$ C32 $4822(3)$ $3411(2)$ $10011.2(15)$ $48.6(7)$ C16 $9653(3)$ $4481(2)$ $-1486.0(18)$ $56.6(8)$ C15 $11473(3)$ $3553(3)$ $-1553.0(18)$ $61.2(9)$ C44 $11596(2)$ $1277(2)$ $5974(3)$ $68.6(12)$ C43 $11038(3)$ $853(2)$ $7510(3)$ $68.1(11)$ C35 $3200(4)$ $3645(3)$ $11236(2)$ $74.4(12)$                                                                                                                                                                                                                                                                                                                                                                                                                  | N4  | 10900(2)    | 1522.0(19) | 6790(2)     | 58.8(8)  |
| C26 $8875(2)$ $4925.6(18)$ $4106.6(16)$ $36.1(5)$ C7 $12614(2)$ $-805.5(19)$ $3916(2)$ $42.6(6)$ N3 $4280(3)$ $3160(3)$ $10849.8(15)$ $70.9(9)$ C27 $7878(2)$ $5477.0(17)$ $4142.7(15)$ $35.0(5)$ C41 $9687(2)$ $2625.9(19)$ $6146(2)$ $41.8(6)$ C40 $9912(2)$ $2089.6(18)$ $6857(2)$ $43.0(6)$ C39 $9115(2)$ $2155.8(18)$ $7637(2)$ $42.5(6)$ C33 $5884(3)$ $3004(2)$ $9639.2(15)$ $43.8(6)$ C13 $8885(2)$ $3809(2)$ $249.7(16)$ $40.6(6)$ C31 $4297(3)$ $4075(2)$ $9502.8(16)$ $45.4(6)$ C8 $13515(2)$ $-523(2)$ $2379(2)$ $44.1(6)$ C32 $4822(3)$ $3411(2)$ $10011.2(15)$ $48.6(7)$ C16 $9653(3)$ $4481(2)$ $-1486.0(18)$ $56.6(8)$ C15 $11473(3)$ $3553(3)$ $-1553.0(18)$ $61.2(9)$ C44 $11596(2)$ $1277(2)$ $5974(3)$ $68.6(12)$ C43 $11038(3)$ $853(2)$ $7510(3)$ $68.1(11)$ C35 $3200(4)$ $3645(3)$ $11236(2)$ $74.4(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C5  | 11782.2(19) | 923.9(17)  | 2245.5(15)  | 31.4(5)  |
| C7 $12614(2)$ $-805.5(19)$ $3916(2)$ $42.6(6)$ N3 $4280(3)$ $3160(3)$ $10849.8(15)$ $70.9(9)$ C27 $7878(2)$ $5477.0(17)$ $4142.7(15)$ $35.0(5)$ C41 $9687(2)$ $2625.9(19)$ $6146(2)$ $41.8(6)$ C40 $9912(2)$ $2089.6(18)$ $6857(2)$ $43.0(6)$ C39 $9115(2)$ $2155.8(18)$ $7637(2)$ $42.5(6)$ C33 $5884(3)$ $3004(2)$ $9639.2(15)$ $43.8(6)$ C13 $8885(2)$ $3809(2)$ $249.7(16)$ $40.6(6)$ C31 $4297(3)$ $4075(2)$ $9502.8(16)$ $45.4(6)$ C8 $13515(2)$ $-523(2)$ $2379(2)$ $44.1(6)$ C32 $4822(3)$ $3411(2)$ $10011.2(15)$ $48.6(7)$ C16 $9653(3)$ $4481(2)$ $-1486.0(18)$ $56.6(8)$ C15 $11473(3)$ $3553(3)$ $-1553.0(18)$ $61.2(9)$ C44 $11596(2)$ $1277(2)$ $5974(3)$ $68.6(12)$ C43 $11038(3)$ $853(2)$ $7510(3)$ $68.1(11)$ C35 $3200(4)$ $3645(3)$ $11236(2)$ $74.4(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C26 | 8875(2)     | 4925.6(18) | 4106.6(16)  | 36.1(5)  |
| N34280(3)3160(3)10849.8(15)70.9(9)C277878(2)5477.0(17)4142.7(15)35.0(5)C419687(2)2625.9(19)6146(2)41.8(6)C409912(2)2089.6(18)6857(2)43.0(6)C399115(2)2155.8(18)7637(2)42.5(6)C335884(3)3004(2)9639.2(15)43.8(6)C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C7  | 12614(2)    | -805.5(19) | 3916(2)     | 42.6(6)  |
| C27 $7878(2)$ $5477.0(17)$ $4142.7(15)$ $35.0(5)$ C41 $9687(2)$ $2625.9(19)$ $6146(2)$ $41.8(6)$ C40 $9912(2)$ $2089.6(18)$ $6857(2)$ $43.0(6)$ C39 $9115(2)$ $2155.8(18)$ $7637(2)$ $42.5(6)$ C33 $5884(3)$ $3004(2)$ $9639.2(15)$ $43.8(6)$ C13 $8885(2)$ $3809(2)$ $249.7(16)$ $40.6(6)$ C31 $4297(3)$ $4075(2)$ $9502.8(16)$ $45.4(6)$ C8 $13515(2)$ $-523(2)$ $2379(2)$ $44.1(6)$ C32 $4822(3)$ $3411(2)$ $10011.2(15)$ $48.6(7)$ C16 $9653(3)$ $4481(2)$ $-1486.0(18)$ $56.6(8)$ C15 $11473(3)$ $3553(3)$ $-1553.0(18)$ $61.2(9)$ C44 $11596(2)$ $1277(2)$ $5974(3)$ $68.6(12)$ C43 $11038(3)$ $853(2)$ $7510(3)$ $68.1(11)$ C35 $3200(4)$ $3645(3)$ $11236(2)$ $74.4(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N3  | 4280(3)     | 3160(3)    | 10849.8(15) | 70.9(9)  |
| C419687(2)2625.9(19)6146(2)41.8(6)C409912(2)2089.6(18)6857(2)43.0(6)C399115(2)2155.8(18)7637(2)42.5(6)C335884(3)3004(2)9639.2(15)43.8(6)C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C27 | 7878(2)     | 5477.0(17) | 4142.7(15)  | 35.0(5)  |
| C409912(2)2089.6(18)6857(2)43.0(6)C399115(2)2155.8(18)7637(2)42.5(6)C335884(3)3004(2)9639.2(15)43.8(6)C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C41 | 9687(2)     | 2625.9(19) | 6146(2)     | 41.8(6)  |
| C399115(2)2155.8(18)7637(2)42.5(6)C335884(3)3004(2)9639.2(15)43.8(6)C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C40 | 9912(2)     | 2089.6(18) | 6857(2)     | 43.0(6)  |
| C33 $5884(3)$ $3004(2)$ $9639.2(15)$ $43.8(6)$ C13 $8885(2)$ $3809(2)$ $249.7(16)$ $40.6(6)$ C31 $4297(3)$ $4075(2)$ $9502.8(16)$ $45.4(6)$ C8 $13515(2)$ $-523(2)$ $2379(2)$ $44.1(6)$ C32 $4822(3)$ $3411(2)$ $10011.2(15)$ $48.6(7)$ C16 $9653(3)$ $4481(2)$ $-1486.0(18)$ $56.6(8)$ C15 $11473(3)$ $3553(3)$ $-1553.0(18)$ $61.2(9)$ C44 $11596(2)$ $1277(2)$ $5974(3)$ $68.6(12)$ C43 $11038(3)$ $853(2)$ $7510(3)$ $68.1(11)$ C35 $3200(4)$ $3645(3)$ $11236(2)$ $74.4(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C39 | 9115(2)     | 2155.8(18) | 7637(2)     | 42.5(6)  |
| C138885(2)3809(2)249.7(16)40.6(6)C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C33 | 5884(3)     | 3004(2)    | 9639.2(15)  | 43.8(6)  |
| C314297(3)4075(2)9502.8(16)45.4(6)C813515(2)-523(2)2379(2)44.1(6)C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C13 | 8885(2)     | 3809(2)    | 249.7(16)   | 40.6(6)  |
| C8 $13515(2)$ $-523(2)$ $2379(2)$ $44.1(6)$ C32 $4822(3)$ $3411(2)$ $10011.2(15)$ $48.6(7)$ C16 $9653(3)$ $4481(2)$ $-1486.0(18)$ $56.6(8)$ C15 $11473(3)$ $3553(3)$ $-1553.0(18)$ $61.2(9)$ C44 $11596(2)$ $1277(2)$ $5974(3)$ $68.6(12)$ C43 $11038(3)$ $853(2)$ $7510(3)$ $68.1(11)$ C35 $3200(4)$ $3645(3)$ $11236(2)$ $74.4(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C31 | 4297(3)     | 4075(2)    | 9502.8(16)  | 45.4(6)  |
| C324822(3)3411(2)10011.2(15)48.6(7)C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C8  | 13515(2)    | -523(2)    | 2379(2)     | 44.1(6)  |
| C169653(3)4481(2)-1486.0(18)56.6(8)C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C32 | 4822(3)     | 3411(2)    | 10011.2(15) | 48.6(7)  |
| C1511473(3)3553(3)-1553.0(18)61.2(9)C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C16 | 9653(3)     | 4481(2)    | -1486.0(18) | 56.6(8)  |
| C4411596(2)1277(2)5974(3)68.6(12)C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C15 | 11473(3)    | 3553(3)    | -1553.0(18) | 61.2(9)  |
| C4311038(3)853(2)7510(3)68.1(11)C353200(4)3645(3)11236(2)74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C44 | 11596(2)    | 1277(2)    | 5974(3)     | 68.6(12) |
| C35 3200(4) 3645(3) 11236(2) 74.4(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C43 | 11038(3)    | 853(2)     | 7510(3)     | 68.1(11) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C35 | 3200(4)     | 3645(3)    | 11236(2)    | 74.4(12) |

| C36 | 4867(5) | 2539(4) | 11371(2) | 87.2(15) |
|-----|---------|---------|----------|----------|
| 050 | 1007(0) | 2007(1) | 115,1(2) | 0,.2(10) |

**Table S.9.** Anisotropic Displacement Parameters  $(Å^2 \times 10^3)$  for **184a**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Si2  | 22.7(3)         | 19.3(2)         | 23.4(3)         | 0.06(18)        | -9.3(2)         | 1.88(19)        |
| Si1  | 18.9(3)         | 19.4(2)         | 25.5(3)         | 0.40(19)        | -5.4(2)         | 0.54(19)        |
| 01   | 27.7(8)         | 40.6(9)         | 28.0(8)         | 0.3(6)          | -1.3(6)         | 6.9(7)          |
| O2   | 51.2(11)        | 38.2(9)         | 37.4(9)         | 3.1(7)          | -25.6(8)        | 7.7(8)          |
| C51  | 22.8(9)         | 20.6(8)         | 23.3(8)         | -2.3(6)         | -9.3(7)         | 3.0(7)          |
| N1   | 32.3(11)        | 32.4(10)        | 54.6(13)        | -1.3(9)         | -17.0(10)       | 11.2(8)         |
| C1   | 21.7(9)         | 20.2(8)         | 27.8(9)         | -1.4(7)         | -6.5(7)         | 1.1(7)          |
| C17  | 22.1(9)         | 16.8(8)         | 32.1(10)        | -0.8(7)         | -7.1(8)         | 1.7(7)          |
| C24  | 22.0(9)         | 19.0(8)         | 25.3(9)         | 2.3(6)          | -4.9(7)         | -0.8(7)         |
| C37  | 23.6(10)        | 22.7(9)         | 36.3(10)        | -1.2(7)         | -13.5(8)        | 1.1(7)          |
| C45  | 22.4(9)         | 18.8(8)         | 26.3(9)         | -1.1(7)         | -9.2(7)         | 2.8(7)          |
| C56  | 28.5(10)        | 22.5(9)         | 35.9(10)        | -2.6(7)         | -15.6(9)        | 3.0(8)          |
| C46  | 26.6(10)        | 29.1(10)        | 25.8(9)         | -2.2(7)         | -7.5(8)         | -2.7(8)         |
| C23  | 24.4(10)        | 25.9(9)         | 29.1(9)         | -0.2(7)         | -7.3(8)         | 2.0(8)          |
| C6   | 22.4(10)        | 25.7(9)         | 29.4(10)        | -1.4(7)         | -6.9(8)         | 0.6(7)          |
| C22  | 25.9(10)        | 21.3(9)         | 33.8(10)        | 2.3(7)          | -6.0(8)         | 0.2(7)          |
| C52  | 27.5(11)        | 23.9(9)         | 39.6(11)        | 0.6(8)          | -11.8(9)        | 0.2(8)          |
| C55  | 38.3(12)        | 25.0(9)         | 37.6(11)        | -3.3(8)         | -21.6(10)       | 7.4(8)          |
| C50  | 30.1(11)        | 21.9(9)         | 28.7(9)         | 1.3(7)          | -9.0(8)         | -0.7(8)         |
| N2   | 70.3(17)        | 53.9(14)        | 27.3(10)        | 8.4(9)          | -10.2(11)       | -14.6(13)       |
| C48  | 31.8(11)        | 28.2(10)        | 39.9(12)        | -12.4(9)        | -12.9(9)        | 0.4(8)          |
| C29  | 32.8(11)        | 25.4(9)         | 26.9(9)         | -0.4(7)         | -11.4(8)        | -1.5(8)         |
| C9   | 27.6(10)        | 24.9(9)         | 27.4(9)         | 0.4(7)          | -6.8(8)         | -0.7(8)         |
| C49  | 31.5(11)        | 21.5(9)         | 41.7(12)        | -1.9(8)         | -10.5(9)        | -3.7(8)         |
| C3   | 27.7(11)        | 24.9(9)         | 37.9(11)        | 2.6(8)          | -11.8(9)        | 1.3(8)          |
| C25  | 29.3(11)        | 27.1(10)        | 40.5(12)        | -2.2(8)         | -15.2(9)        | -0.7(8)         |
| C2   | 25.5(10)        | 25.1(9)         | 31.2(10)        | 1.7(7)          | -7.2(8)         | 0.6(8)          |
| C38  | 34.5(12)        | 23.3(9)         | 41.6(12)        | -2.3(8)         | -21.2(10)       | 1.5(8)          |
| C10  | 30.8(11)        | 25.7(9)         | 27.8(10)        | -0.5(7)         | -6.1(8)         | -1.2(8)         |
| C47  | 34.1(12)        | 34.8(11)        | 29.7(10)        | -9.3(8)         | -9.8(9)         | -1.1(9)         |
| C28  | 32.2(11)        | 25.6(9)         | 36.5(11)        | -2.2(8)         | -8.8(9)         | 6.3(8)          |
| C21  | 27.4(11)        | 24.1(10)        | 45.4(13)        | 6.7(9)          | -3.9(9)         | -1.2(8)         |
| C4   | 27.6(11)        | 20.9(9)         | 45.7(12)        | -2.9(8)         | -13.9(9)        | 3.6(8)          |
| C18  | 29.6(11)        | 29.7(10)        | 39.4(11)        | -6.5(9)         | -11.2(9)        | -1.5(8)         |

| C42 | 24.0(10) | 28.0(10) | 45.9(13) | -3.7(9)   | -7.5(9)   | 2.6(8)    |
|-----|----------|----------|----------|-----------|-----------|-----------|
| C53 | 34.4(12) | 25.5(10) | 51.8(14) | 2.9(9)    | -15.0(11) | -5.5(9)   |
| C11 | 37.2(13) | 37.5(12) | 27.5(10) | -1.1(9)   | -3.5(9)   | -4.1(10)  |
| C30 | 40.9(13) | 36.8(12) | 30.3(11) | -4.6(9)   | -7.0(10)  | 2.1(10)   |
| C54 | 45.4(14) | 20.7(9)  | 40.0(12) | 0.9(8)    | -20.4(10) | -1.1(9)   |
| C14 | 37.9(13) | 33.4(11) | 33.3(11) | 4.0(9)    | -12.1(10) | 2.3(9)    |
| C12 | 53.6(16) | 34.8(11) | 26.7(10) | 3.4(8)    | -11.1(10) | -10.0(11) |
| C19 | 31.9(12) | 32.4(11) | 55.8(15) | -11.8(10) | -17.3(11) | -1.6(9)   |
| C34 | 46.2(13) | 27.2(10) | 27.4(10) | -1.3(8)   | -17.5(9)  | -2.5(9)   |
| C20 | 26.8(11) | 18.8(9)  | 67.6(17) | -0.3(10)  | -10.7(11) | -2.6(8)   |
| N4  | 39.6(13) | 32.6(11) | 111(2)   | -10.8(13) | -33.2(15) | 13.4(10)  |
| C5  | 24.7(10) | 29.4(10) | 38.0(11) | -4.8(8)   | -6.4(9)   | 5.5(8)    |
| C26 | 40.3(13) | 28.8(10) | 43.7(13) | -5.5(9)   | -17.9(11) | -3.6(9)   |
| C7  | 38.2(13) | 24.4(10) | 69.7(18) | 5.2(11)   | -26.3(13) | 1.5(9)    |
| N3  | 105(3)   | 72.3(19) | 23.2(11) | -3.5(11)  | 1.4(13)   | -12.0(18) |
| C27 | 44.6(14) | 22.3(9)  | 37.9(11) | -5.0(8)   | -11.2(10) | 1.2(9)    |
| C41 | 27.8(12) | 29.0(11) | 66.3(17) | -11.4(11) | -8.8(11)  | 5.5(9)    |
| C40 | 30.8(12) | 24.0(10) | 80(2)    | -10.0(11) | -24.5(13) | 5.4(9)    |
| C39 | 48.0(15) | 23.6(10) | 69.1(18) | -3.1(10)  | -39.2(14) | 5.4(10)   |
| C33 | 70.0(19) | 38.6(12) | 25.9(11) | 1.7(9)    | -19.3(12) | -7.2(12)  |
| C13 | 51.2(15) | 37.4(12) | 34.6(12) | 8.2(9)    | -18.4(11) | -3.7(11)  |
| C31 | 49.9(16) | 48.7(15) | 31.7(12) | -9.1(10)  | 0.1(11)   | -5.5(12)  |
| C8  | 30.5(12) | 32.3(12) | 69.0(18) | -7.4(11)  | -14.9(12) | 10.9(10)  |
| C32 | 77(2)    | 43.8(14) | 24.0(11) | -4.2(9)   | -8.9(12)  | -18.1(14) |
| C16 | 95(3)    | 42.9(14) | 37.4(13) | 11.1(11)  | -29.3(15) | -22.8(16) |
| C15 | 80(2)    | 65(2)    | 28.2(12) | 4.1(12)   | 1.0(14)   | -18.9(18) |
| C44 | 27.4(14) | 34.5(14) | 139(4)   | -18.5(18) | -15.0(18) | 9.1(11)   |
| C43 | 53.2(19) | 32.8(13) | 134(4)   | -3.2(17)  | -57(2)    | 13.6(13)  |
| C35 | 99(3)    | 81(2)    | 33.2(14) | -19.0(15) | 9.5(16)   | -41(2)    |
| C36 | 146(4)   | 87(3)    | 25.1(14) | 7.3(15)   | -22(2)    | -16(3)    |
|     |          |          |          |           |           |           |

## Table S.10. Bond Lengths for 184a.

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| Si2  | C51  | 1.873(2) | N2   | C16  | 1.452(4) |
| Si2  | C37  | 1.843(2) | N2   | C15  | 1.450(5) |
| Si2  | C45  | 1.877(2) | C48  | C49  | 1.381(3) |
| Si2  | C29  | 1.834(2) | C48  | C47  | 1.392(3) |
| Si1  | C1   | 1.847(2) | C29  | C30  | 1.405(3) |
| Si1  | C17  | 1.878(2) | C29  | C34  | 1.398(3) |

| Si1 | C24 | 1.875(2) | C9  | C10 | 1.390(3) |
|-----|-----|----------|-----|-----|----------|
| Si1 | C9  | 1.839(2) | C9  | C14 | 1.414(3) |
| 01  | C6  | 1.387(3) | C3  | C2  | 1.380(3) |
| 01  | C10 | 1.390(3) | C3  | C4  | 1.414(3) |
| 02  | C38 | 1.386(3) | C25 | C26 | 1.392(3) |
| 02  | C34 | 1.379(3) | C38 | C39 | 1.401(3) |
| C51 | C56 | 1.396(3) | C10 | C11 | 1.390(3) |
| C51 | C52 | 1.394(3) | C28 | C27 | 1.388(3) |
| N1  | C4  | 1.377(3) | C21 | C20 | 1.388(4) |
| N1  | C7  | 1.448(4) | C4  | C5  | 1.399(3) |
| N1  | C8  | 1.444(4) | C18 | C19 | 1.397(3) |
| C1  | C6  | 1.393(3) | C42 | C41 | 1.384(3) |
| C1  | C2  | 1.406(3) | C53 | C54 | 1.391(3) |
| C17 | C22 | 1.398(3) | C11 | C12 | 1.414(4) |
| C17 | C18 | 1.396(3) | C30 | C31 | 1.383(3) |
| C24 | C23 | 1.396(3) | C14 | C13 | 1.379(3) |
| C24 | C25 | 1.399(3) | C12 | C13 | 1.405(4) |
| C37 | C38 | 1.393(3) | C19 | C20 | 1.386(4) |
| C37 | C42 | 1.415(3) | C34 | C33 | 1.394(3) |
| C45 | C46 | 1.397(3) | N4  | C40 | 1.380(3) |
| C45 | C50 | 1.397(3) | N4  | C44 | 1.447(5) |
| C56 | C55 | 1.391(3) | N4  | C43 | 1.452(5) |
| C46 | C47 | 1.387(3) | C26 | C27 | 1.387(4) |
| C23 | C28 | 1.393(3) | N3  | C32 | 1.381(3) |
| C6  | C5  | 1.400(3) | N3  | C35 | 1.453(6) |
| C22 | C21 | 1.391(3) | N3  | C36 | 1.447(6) |
| C52 | C53 | 1.401(3) | C41 | C40 | 1.403(4) |
| C55 | C54 | 1.376(3) | C40 | C39 | 1.399(4) |
| C50 | C49 | 1.399(3) | C33 | C32 | 1.389(5) |
| N2  | C12 | 1.370(3) | C31 | C32 | 1.412(4) |
|     |     |          |     |     |          |

## Table S.11. Bond Angles for 184a.

| Atom Atom Angle/° |     |     |            | Atom Atom Atom Angle/° |     |     |            |  |
|-------------------|-----|-----|------------|------------------------|-----|-----|------------|--|
| C51               | Si2 | C45 | 107.90(8)  | C10                    | C9  | C14 | 115.2(2)   |  |
| C37               | Si2 | C51 | 112.34(9)  | C14                    | C9  | Si1 | 123.13(17) |  |
| C37               | Si2 | C45 | 112.36(9)  | C48                    | C49 | C50 | 119.9(2)   |  |
| C29               | Si2 | C51 | 112.83(9)  | C2                     | C3  | C4  | 119.6(2)   |  |
| C29               | Si2 | C37 | 101.74(10) | C26                    | C25 | C24 | 121.3(2)   |  |
| C29               | Si2 | C45 | 109.65(10) | C3                     | C2  | C1  | 124.2(2)   |  |
|                   |     |     |            |                        |     |     |            |  |

| C1  | Si1 | C17 | 111.15(9)  | O2  | C38 | C37 | 125.0(2)   |
|-----|-----|-----|------------|-----|-----|-----|------------|
| C1  | Si1 | C24 | 112.77(9)  | O2  | C38 | C39 | 112.8(2)   |
| C24 | Si1 | C17 | 106.55(9)  | C37 | C38 | C39 | 122.2(2)   |
| C9  | Sil | C1  | 101.39(10) | 01  | C10 | C9  | 124.88(19) |
| C9  | Sil | C17 | 112.21(10) | C11 | C10 | 01  | 111.7(2)   |
| C9  | Sil | C24 | 112.88(9)  | C11 | C10 | C9  | 123.4(2)   |
| C6  | 01  | C10 | 125.60(17) | C46 | C47 | C48 | 120.1(2)   |
| C34 | 02  | C38 | 125.89(17) | C27 | C28 | C23 | 119.5(2)   |
| C56 | C51 | Si2 | 119.61(15) | C20 | C21 | C22 | 119.8(2)   |
| C52 | C51 | Si2 | 122.45(15) | N1  | C4  | C3  | 121.1(2)   |
| C52 | C51 | C56 | 117.66(18) | N1  | C4  | C5  | 121.2(2)   |
| C4  | N1  | C7  | 120.0(2)   | C5  | C4  | C3  | 117.7(2)   |
| C4  | N1  | C8  | 119.4(2)   | C17 | C18 | C19 | 121.2(2)   |
| C8  | N1  | C7  | 118.4(2)   | C41 | C42 | C37 | 123.4(2)   |
| C6  | C1  | Si1 | 121.07(15) | C54 | C53 | C52 | 119.9(2)   |
| C6  | C1  | C2  | 114.90(18) | C10 | C11 | C12 | 120.2(2)   |
| C2  | C1  | Si1 | 123.84(16) | C31 | C30 | C29 | 123.3(2)   |
| C22 | C17 | Si1 | 119.78(16) | C55 | C54 | C53 | 120.0(2)   |
| C18 | C17 | Si1 | 122.53(17) | C13 | C14 | C9  | 123.2(2)   |
| C18 | C17 | C22 | 117.52(19) | N2  | C12 | C11 | 121.0(3)   |
| C23 | C24 | Si1 | 119.73(15) | N2  | C12 | C13 | 121.5(3)   |
| C23 | C24 | C25 | 117.51(19) | C13 | C12 | C11 | 117.5(2)   |
| C25 | C24 | Si1 | 122.69(16) | C20 | C19 | C18 | 120.0(2)   |
| C38 | C37 | Si2 | 121.02(18) | 02  | C34 | C29 | 125.1(2)   |
| C38 | C37 | C42 | 115.6(2)   | 02  | C34 | C33 | 112.6(2)   |
| C42 | C37 | Si2 | 123.38(16) | C33 | C34 | C29 | 122.3(2)   |
| C46 | C45 | Si2 | 120.02(15) | C19 | C20 | C21 | 119.8(2)   |
| C46 | C45 | C50 | 118.19(18) | C40 | N4  | C44 | 119.8(3)   |
| C50 | C45 | Si2 | 121.70(15) | C40 | N4  | C43 | 119.5(3)   |
| C55 | C56 | C51 | 121.8(2)   | C44 | N4  | C43 | 116.7(3)   |
| C47 | C46 | C45 | 121.0(2)   | C4  | C5  | C6  | 120.7(2)   |
| C28 | C23 | C24 | 121.7(2)   | C27 | C26 | C25 | 119.9(2)   |
| 01  | C6  | C1  | 125.17(18) | C32 | N3  | C35 | 120.2(3)   |
| 01  | C6  | C5  | 111.95(18) | C32 | N3  | C36 | 119.5(4)   |
| C1  | C6  | C5  | 122.9(2)   | C36 | N3  | C35 | 119.6(3)   |
| C21 | C22 | C17 | 121.7(2)   | C26 | C27 | C28 | 120.1(2)   |
| C51 | C52 | C53 | 120.9(2)   | C42 | C41 | C40 | 119.8(3)   |
| C54 | C55 | C56 | 119.8(2)   | N4  | C40 | C41 | 120.9(3)   |
| C45 | C50 | C49 | 120.9(2)   | N4  | C40 | C39 | 120.8(3)   |
|     |     |     |            |     |     |     |            |

| C12 | N2  | C16 | 120.0(3)   | C39 | C40 | C41 | 118.2(2) |
|-----|-----|-----|------------|-----|-----|-----|----------|
| C12 | N2  | C15 | 120.8(3)   | C40 | C39 | C38 | 120.8(2) |
| C15 | N2  | C16 | 117.9(2)   | C32 | C33 | C34 | 120.9(3) |
| C49 | C48 | C47 | 119.9(2)   | C14 | C13 | C12 | 120.5(2) |
| C30 | C29 | Si2 | 123.26(17) | C30 | C31 | C32 | 119.7(3) |
| C34 | C29 | Si2 | 121.04(18) | N3  | C32 | C33 | 121.3(3) |
| C34 | C29 | C30 | 115.6(2)   | N3  | C32 | C31 | 120.6(3) |
| C10 | C9  | Sil | 121.66(16) | C33 | C32 | C31 | 118.1(2) |

**Table S.12.** Hydrogen Atom Coordinates (Å  $\times 10^4$ ) and Isotropic Displacement Parameters (Å $\times 10^3$ ) for 184a.

| Atom | x        | У       | Z       | U(eq) |
|------|----------|---------|---------|-------|
| H56  | 5111.06  | 5702.83 | 6695.78 | 33    |
| H46  | 6481.14  | 4009.13 | 5386.1  | 33    |
| H23  | 6855.91  | 4007.99 | 3102.21 | 32    |
| H22  | 7169.12  | 1737.76 | 4253.66 | 34    |
| H52  | 8396.72  | 5480.11 | 6587.81 | 36    |
| H55  | 5241.54  | 7487.2  | 6357.63 | 38    |
| H50  | 4532.5   | 2708.08 | 7603.33 | 32    |
| H48  | 3968.16  | 2149.05 | 5427.64 | 38    |
| H49  | 3500.5   | 1906.54 | 6889.17 | 38    |
| H3   | 10829.66 | 267.98  | 4264.69 | 36    |
| H25  | 9803.18  | 3657.42 | 3670.91 | 38    |
| H2   | 9366.56  | 1347.69 | 4088.93 | 33    |
| H47  | 5454.63  | 3211.3  | 4677.67 | 39    |
| H28  | 6439.22  | 5512.44 | 3791.52 | 38    |
| H21  | 5667.07  | 623.64  | 4692.2  | 41    |
| H18  | 7341.16  | 1495.39 | 1830.93 | 39    |
| H42  | 8568.18  | 3568.06 | 5743.57 | 40    |
| H53  | 8541.3   | 7268.41 | 6208.83 | 44    |
| H11  | 11390.45 | 2714.77 | -109.38 | 42    |
| H30  | 4461.87  | 4722.62 | 8323.54 | 44    |
| H54  | 6950.32  | 8274.42 | 6122.72 | 41    |
| H14  | 7789.94  | 3721.77 | 1405.64 | 42    |
| H19  | 5806.87  | 408.09  | 2268.32 | 46    |
| H20  | 4973.14  | -36.37  | 3699.07 | 46    |
| Н5   | 12399.08 | 824.55  | 1766.83 | 38    |
| H26  | 9389.66  | 5156.76 | 4365.72 | 43    |
| H7A  | 12589.19 | -329.06 | 4336.91 | 64    |

| H7B  | 13276.3  | -1268.53 | 3857.21  | 64  |
|------|----------|----------|----------|-----|
| H7C  | 11935.83 | -1215.98 | 4094.56  | 64  |
| H27  | 7710.88  | 6088.08  | 4424.85  | 42  |
| H41  | 10210.12 | 2591.64  | 5608.26  | 50  |
| H39  | 9251.17  | 1797.93  | 8125.99  | 51  |
| H33  | 6268.14  | 2583.29  | 9974.83  | 53  |
| H13  | 8404.9   | 4223.61  | -11.95   | 49  |
| H31  | 3583.19  | 4386.27  | 9742.44  | 54  |
| H8A  | 13149.16 | -820.2   | 2015.16  | 66  |
| H8B  | 14033.34 | -1040    | 2545.97  | 66  |
| H8C  | 13932    | 84.72    | 2073.84  | 66  |
| H16A | 8915.97  | 4187.44  | -1396.59 | 85  |
| H16B | 10031.32 | 4585.94  | -2089.16 | 85  |
| H16C | 9557.23  | 5147.06  | -1246.03 | 85  |
| H15A | 11985.19 | 3916.98  | -1341.13 | 92  |
| H15B | 11579.92 | 3785.05  | -2147.45 | 92  |
| H15C | 11631.46 | 2805.45  | -1489.86 | 92  |
| H44A | 11158.44 | 899.79   | 5705.89  | 103 |
| H44B | 12243.24 | 847.17   | 6038.64  | 103 |
| H44C | 11857.21 | 1919.68  | 5623.54  | 103 |
| H43A | 10931.82 | 1262.46  | 7986.55  | 102 |
| H43B | 11793.65 | 535      | 7370.48  | 102 |
| H43C | 10481.31 | 309.86   | 7657.83  | 102 |
| H35A | 3288.76  | 4389.5   | 11231.68 | 112 |
| H35B | 2909.11  | 3338.95  | 11816.63 | 112 |
| H35C | 2673.2   | 3531.92  | 10920.76 | 112 |
| H36A | 5080.35  | 1864.32  | 11153.01 | 131 |
| H36B | 4375.32  | 2440.29  | 11947.44 | 131 |
| H36C | 5542.07  | 2893.25  | 11366.13 | 131 |

#### S.3 X-ray Structure of Compound 206a

A single crystal of  $N^6$ ,  $N^6$ ,  $N^{12}$ ,  $N^{12}$ -tetramethyl-9,9-diphenyl-9*H*-tribenzo[*b*,*d*,*f*]silepin-6,12diamine  $(C_{34}H_{32}N_2Si)$ (206a) was prepared by recrystallization from the dichloromethane/ethanol solution. A suitable crystal was selected, and the X-ray diffraction was collected on an Rigaku AFC HyPix-6000 diffractometer: fixed-chi single diffractometer with graphite monochromated Mo-K $\alpha$  radiation ( $\lambda = 0.71073$ A). The crystal was kept at 123 K during data collection. The data were collected using  $\omega$  scan in the  $\theta$  range of  $5.182 \le 2\theta \le$ 54.964 deg. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods,<sup>[115]</sup> and expanded using Fourier techniques.<sup>[116]</sup> Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F<sup>2</sup>

was based on 12122 observed reflections. Neutral atom scattering factors were taken from Cromer and Waber.<sup>[117]</sup> All calculations were performed using the Olex-2 crystallographic software package except for refinement,<sup>[118]</sup> which was performed using version 2018/3 of ShelXL (Sheldrick, 2015) of final refinement as well as the bond lengths and angles are summarized in the supporting information, and the numbering scheme employed is also shown in the supporting information, which were drawn with ORTEP at 50% probability ellipsoid.



### Crystal structure determination of 206a

C<sub>34</sub>H<sub>32</sub>N<sub>2</sub>Si (M =496.70 g/mol): triclinic, space group *P*-1 (no. 2), a = 9.8113(2) Å, b = 12.0833(4) Å, c = 12.1527(3) Å,  $a = 82.005(2)^{\circ}$ ,  $\beta = 82.769(2)^{\circ}$ ,  $\gamma = 71.726(3)^{\circ}$ , V = 1349.59(7) Å<sup>3</sup>, Z = 2, T = 123 K,  $\mu$ (Mo K $\alpha$ ) = 0.113 mm<sup>-1</sup>, *Dcalc* = 1.222 g/cm<sup>3</sup>, 20753 reflections measured (5.182°  $\leq 2\theta \leq 54.964^{\circ}$ ), 6188 unique ( $R_{int} = 0.0182$ ,  $R_{sigma} = 0.0186$ ) which were used in all calculations. The final  $R_1$  was 0.0353 ( $I > 2\sigma(I)$ ) and  $wR_2$  was 0.0950 (all data).

| Table S.13. Crystal data and stru | cture refinement for 206a |
|-----------------------------------|---------------------------|
|-----------------------------------|---------------------------|

| Empirical formula | $C_{34}H_{32}N_2Si$ |
|-------------------|---------------------|
| Formula weight    | 496.70              |
| Temperature/K     | 123                 |
| Crystal system    | triclinic           |
| Space group       | <i>P</i> -1         |
| a/Å               | 9.8113(2)           |
| b/Å               | 12.0833(4)          |
|                   | 101                 |

<sup>134</sup> 

| c/Å                                                                                                                                                                                                                                                                             | 12.1527(3)                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\alpha$ /°                                                                                                                                                                                                                                                                     | 82.005(2)                                                                                                                                                                                                                                                               |
| $\beta^{\prime \circ}$                                                                                                                                                                                                                                                          | 82.769(2)                                                                                                                                                                                                                                                               |
| $\gamma/^{\circ}$                                                                                                                                                                                                                                                               | 71.726(3)                                                                                                                                                                                                                                                               |
| <i>Volume</i> /Å <sup>3</sup>                                                                                                                                                                                                                                                   | 1349.59(7)                                                                                                                                                                                                                                                              |
| Ζ                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                       |
| Dcalc g/cm <sup>3</sup>                                                                                                                                                                                                                                                         | 1.222                                                                                                                                                                                                                                                                   |
| $\mu/\text{mm}^{-1}$                                                                                                                                                                                                                                                            | 0.113                                                                                                                                                                                                                                                                   |
| <i>F</i> (000)                                                                                                                                                                                                                                                                  | 528.0                                                                                                                                                                                                                                                                   |
| Crystal size/mm <sup>3</sup>                                                                                                                                                                                                                                                    | 0.5 	imes 0.4 	imes 0.4                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 | /•                                                                                                                                                                                                                                                                      |
| Radiation                                                                                                                                                                                                                                                                       | Mo Ka ( $\lambda = 0.71073$ )                                                                                                                                                                                                                                           |
| Radiation $2\theta$ range for data collection/°                                                                                                                                                                                                                                 | Mo K $\alpha$ ( $\lambda$ = 0.71073)<br>5.182 to 54.964                                                                                                                                                                                                                 |
| Radiation<br>$2\theta$ range for data collection/°<br>Index ranges                                                                                                                                                                                                              | Mo K $\alpha$ ( $\lambda = 0.71073$ )<br>5.182 to 54.964<br>-12 $\leq h \leq 12$ , -15 $\leq k \leq 14$ , -15 $\leq l \leq 15$                                                                                                                                          |
| Radiation2θ range for data collection/°Index rangesReflections collected                                                                                                                                                                                                        | Mo Ka ( $\lambda = 0.71073$ )<br>5.182 to 54.964<br>-12 $\leq h \leq 12$ , -15 $\leq k \leq 14$ , -15 $\leq l \leq 15$<br>20753                                                                                                                                         |
| Radiation2θ range for data collection/°Index rangesReflections collectedIndependent reflections                                                                                                                                                                                 | Mo K $\alpha$ ( $\lambda = 0.71073$ )<br>5.182 to 54.964<br>-12 $\leq h \leq 12$ , -15 $\leq k \leq 14$ , -15 $\leq l \leq 15$<br>20753<br>6188 [ $R_{\text{int}} = 0.0182$ , $R_{\text{sigma}} = 0.0186$ ]                                                             |
| Radiation2θ range for data collection/°Index rangesReflections collectedIndependent reflectionsData/restraints/parameters                                                                                                                                                       | Mo K $\alpha$ ( $\lambda = 0.71073$ )<br>5.182 to 54.964<br>$-12 \le h \le 12, -15 \le k \le 14, -15 \le l \le 15$<br>20753<br>6188 [ $R_{int} = 0.0182, R_{sigma} = 0.0186$ ]<br>6188/0/338                                                                            |
| Radiation2θ range for data collection/°Index rangesReflections collectedIndependent reflectionsData/restraints/parametersGoodness-of-fit on F²                                                                                                                                  | Mo K $\alpha$ ( $\lambda = 0.71073$ )<br>5.182 to 54.964<br>$-12 \le h \le 12, -15 \le k \le 14, -15 \le l \le 15$<br>20753<br>6188 [ $R_{int} = 0.0182, R_{sigma} = 0.0186$ ]<br>6188/0/338<br>1.046                                                                   |
| Radiation<br>$2\theta$ range for data collection/°<br>Index ranges<br>Reflections collected<br>Independent reflections<br>Data/restraints/parameters<br>Goodness-of-fit on F <sup>2</sup><br>Final <i>R</i> indexes [ $I \ge 2\sigma(I)$ ]                                      | Mo K $\alpha$ ( $\lambda = 0.71073$ )<br>5.182 to 54.964<br>$-12 \le h \le 12, -15 \le k \le 14, -15 \le l \le 15$<br>20753<br>6188 [ $R_{int} = 0.0182, R_{sigma} = 0.0186$ ]<br>6188/0/338<br>1.046<br>$R_1 = 0.0353, wR_2 = 0.0929$                                  |
| Radiation<br>$2\theta$ range for data collection/°<br>Index ranges<br>Reflections collected<br>Independent reflections<br>Data/restraints/parameters<br>Goodness-of-fit on F <sup>2</sup><br>Final <i>R</i> indexes [ $I \ge 2\sigma(I)$ ]<br>Final <i>R</i> indexes [all data] | Mo K $\alpha$ ( $\lambda = 0.71073$ )<br>5.182 to 54.964<br>$-12 \le h \le 12, -15 \le k \le 14, -15 \le l \le 15$<br>20753<br>6188 [ $R_{int} = 0.0182, R_{sigma} = 0.0186$ ]<br>6188/0/338<br>1.046<br>$R_1 = 0.0353, wR_2 = 0.0929$<br>$R_1 = 0.0386, wR_2 = 0.0950$ |

**Table S.14.** Fractional Atomic Coordinates ( $\times 10^4$ ) and Equivalent Isotropic DisplacementParameters (Å<sup>2</sup> $\times 10^3$ ) for **206a**. U<sub>eq</sub> is defined as 1/3 of the trace of the orthogonalised U<sub>IJ</sub>tensor.

| Atom | x           | у          | Z.         | Ueq      |
|------|-------------|------------|------------|----------|
| Sil  | 6746.1(3)   | 4082.5(2)  | 3022.0(2)  | 15.30(8) |
| N32  | 11465.1(11) | 1937.6(9)  | -515.6(9)  | 26.6(2)  |
| N35  | 8314.5(13)  | -68.4(9)   | 6567.6(9)  | 30.0(2)  |
| C20  | 7029.9(12)  | 5405.3(9)  | 3484.1(9)  | 17.8(2)  |
| C26  | 4883.4(11)  | 4513.4(9)  | 2574.3(9)  | 17.9(2)  |
| C7   | 8141.1(12)  | 2482.0(9)  | 1431.8(9)  | 17.7(2)  |
| C8   | 7011.7(12)  | 1886.3(9)  | 1781.1(9)  | 18.8(2)  |
| C3   | 9206.9(12)  | 4003.2(10) | 1450.1(9)  | 20.3(2)  |
| C19  | 7128.2(11)  | 2837.7(9)  | 4133.0(9)  | 16.5(2)  |
| C2   | 8114.9(11)  | 3511.9(9)  | 1865.8(9)  | 17.4(2)  |
| C14  | 7166.2(11)  | 1711.9(9)  | 3916.4(9)  | 17.6(2)  |
| C18  | 7532.4(12)  | 2941.6(10) | 5166.1(9)  | 19.4(2)  |
| C25  | 8366.9(13)  | 5387.4(10) | 3786.8(10) | 22.4(2)  |
| C13  | 6603.6(12)  | 1516.7(9)  | 2893.4(9)  | 18.5(2)  |
| C5   | 10334.4(12) | 2493.6(10) | 228.9(9)   | 20.7(2)  |

| Atom | x           | у           | Z           | Ueq     |
|------|-------------|-------------|-------------|---------|
| C16  | 7975.8(12)  | 874.7(10)   | 5762.2(10)  | 21.5(2) |
| C6   | 9214.0(12)  | 2010.9(10)  | 609.5(9)    | 19.8(2) |
| C12  | 5566.1(13)  | 921.9(10)   | 3079.1(10)  | 23.7(2) |
| C15  | 7597.7(12)  | 755.1(10)   | 4718.0(9)   | 20.2(2) |
| C17  | 7945.3(12)  | 1998.9(10)  | 5967.5(9)   | 21.8(2) |
| C9   | 6348.0(13)  | 1646.5(11)  | 923.6(10)   | 24.9(2) |
| C27  | 3764.2(13)  | 4231.7(11)  | 3251.6(10)  | 24.2(2) |
| C4   | 10303.8(12) | 3515.1(10)  | 662.0(9)    | 21.9(2) |
| C21  | 5911.2(13)  | 6460.5(10)  | 3508.5(9)   | 21.5(2) |
| C11  | 4931.1(14)  | 692.6(11)   | 2219.5(11)  | 28.3(3) |
| C31  | 4559.1(14)  | 5186.6(12)  | 1556.7(11)  | 29.1(3) |
| C24  | 8587.4(15)  | 6390.4(12)  | 4066.4(10)  | 29.2(3) |
| C30  | 3164.7(15)  | 5577.2(12)  | 1236.7(11)  | 33.2(3) |
| C22  | 6119.5(15)  | 7460.8(11)  | 3808.1(10)  | 28.8(3) |
| C29  | 2068.0(14)  | 5302.7(12)  | 1931.0(12)  | 30.9(3) |
| C10  | 5323.4(14)  | 1063.3(11)  | 1131.7(11)  | 29.3(3) |
| C34  | 12557.5(14) | 2507.1(12)  | -920.4(11)  | 30.7(3) |
| C23  | 7459.8(17)  | 7424.0(12)  | 4069.9(11)  | 32.7(3) |
| C37  | 8686.9(16)  | -1254.7(11) | 6268.7(12)  | 33.8(3) |
| C33  | 11149.0(16) | 1297.2(12)  | -1324.4(11) | 34.4(3) |
| C28  | 2369.8(14)  | 4620.0(13)  | 2931.6(12)  | 32.8(3) |
| C36  | 8741(2)     | 73.1(15)    | 7609.9(14)  | 52.4(5) |

**Table S.15.** Anisotropic Displacement Parameters (×10<sup>4</sup>) for **206a**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U11       | U22       | U33       | U23      | U13       | U12       |
|------|-----------|-----------|-----------|----------|-----------|-----------|
| Si1  | 13.78(14) | 13.97(14) | 17.33(14) | 0.08(10) | -0.89(10) | -3.94(11) |
| N32  | 27.4(5)   | 26.1(5)   | 23.0(5)   | -4.2(4)  | 6.6(4)    | -5.9(4)   |
| N35  | 36.4(6)   | 24.3(5)   | 29.0(5)   | 9.5(4)   | -13.3(5)  | -9.9(5)   |
| C20  | 19.3(5)   | 17.2(5)   | 16.6(5)   | -0.7(4)  | 1.7(4)    | -6.8(4)   |
| C26  | 16.4(5)   | 16.7(5)   | 20.0(5)   | -1.1(4)  | -2.5(4)   | -4.3(4)   |
| C7   | 19.1(5)   | 17.0(5)   | 16.1(5)   | 2.2(4)   | -4.2(4)   | -4.7(4)   |
| C8   | 19.5(5)   | 15.2(5)   | 21.2(5)   | -1.1(4)  | -3.3(4)   | -4.5(4)   |
| C3   | 21.7(5)   | 17.7(5)   | 21.0(5)   | -1.0(4)  | -0.3(4)   | -6.4(4)   |
| C19  | 13.2(5)   | 16.6(5)   | 18.2(5)   | 0.2(4)   | -0.4(4)   | -3.6(4)   |
| C2   | 16.9(5)   | 15.9(5)   | 17.7(5)   | 1.0(4)   | -2.0(4)   | -3.5(4)   |
| C14  | 15.3(5)   | 18.2(5)   | 18.4(5)   | -0.4(4)  | 0.2(4)    | -5.2(4)   |
| C18  | 17.7(5)   | 19.1(5)   | 21.2(5)   | -2.0(4)  | -1.0(4)   | -5.5(4)   |
| C25  | 21.9(5)   | 22.9(6)   | 23.1(5)   | -1.4(4)  | -1.5(4)   | -8.3(4)   |
| C13  | 18.3(5)   | 14.7(5)   | 22.0(5)   | -0.9(4)  | -2.4(4)   | -4.3(4)   |

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C5   | 21.8(5)         | 19.3(5)         | 16.6(5)         | 1.6(4)          | -0.1(4)         | -1.8(4)         |
| C16  | 18.2(5)         | 21.9(5)         | 22.4(5)         | 4.7(4)          | -3.4(4)         | -5.7(4)         |
| C6   | 24.4(5)         | 16.8(5)         | 17.2(5)         | -0.5(4)         | -2.9(4)         | -4.7(4)         |
| C12  | 23.0(6)         | 22.0(6)         | 27.2(6)         | -0.8(4)         | -0.9(4)         | -9.6(5)         |
| C15  | 20.4(5)         | 16.1(5)         | 23.2(5)         | 0.9(4)          | -1.0(4)         | -6.0(4)         |
| C17  | 20.8(5)         | 25.7(6)         | 18.9(5)         | 0.1(4)          | -4.3(4)         | -7.4(4)         |
| C9   | 29.3(6)         | 24.5(6)         | 22.5(5)         | -0.9(4)         | -6.2(5)         | -9.5(5)         |
| C27  | 20.3(5)         | 29.7(6)         | 21.8(5)         | 3.2(5)          | -2.7(4)         | -8.8(5)         |
| C4   | 20.8(5)         | 22.1(5)         | 22.0(5)         | 0.7(4)          | 1.7(4)          | -7.9(4)         |
| C21  | 23.1(5)         | 19.8(5)         | 19.2(5)         | -1.1(4)         | 2.8(4)          | -5.2(4)         |
| C11  | 25.3(6)         | 26.7(6)         | 37.9(7)         | -3.3(5)         | -4.9(5)         | -14.1(5)        |
| C31  | 24.5(6)         | 34.9(7)         | 26.1(6)         | 9.4(5)          | -4.5(5)         | -10.8(5)        |
| C24  | 35.2(7)         | 34.9(7)         | 25.3(6)         | -2.5(5)         | -3.4(5)         | -21.6(6)        |
| C30  | 31.5(7)         | 35.0(7)         | 30.8(7)         | 10.6(5)         | -14.6(5)        | -8.1(6)         |
| C22  | 39.7(7)         | 18.1(5)         | 25.0(6)         | -4.3(4)         | 4.2(5)          | -5.2(5)         |
| C29  | 20.6(6)         | 33.2(7)         | 39.5(7)         | -0.2(5)         | -13.0(5)        | -6.5(5)         |
| C10  | 31.6(7)         | 29.0(6)         | 32.3(6)         | -4.1(5)         | -11.5(5)        | -12.7(5)        |
| C34  | 25.7(6)         | 31.7(7)         | 28.7(6)         | -2.4(5)         | 8.2(5)          | -4.5(5)         |
| C23  | 53.9(8)         | 25.0(6)         | 25.8(6)         | -5.8(5)         | 0.6(6)          | -21.6(6)        |
| C37  | 35.1(7)         | 23.2(6)         | 37.9(7)         | 8.4(5)          | -5.1(6)         | -5.6(5)         |
| C33  | 43.6(8)         | 27.2(6)         | 30.2(7)         | -9.9(5)         | 10.0(6)         | -9.7(6)         |
| C28  | 19.5(6)         | 45.0(8)         | 35.0(7)         | 2.6(6)          | -2.7(5)         | -14.0(6)        |
| C36  | 82.5(13)        | 39.8(8)         | 42.2(9)         | 17.3(7)         | -40.1(9)        | -24.8(9)        |

## Table S.16. Bond Lengths in Å for 206a.

| Atom | Atom | Length/Å   | Atom | Atom Atom Length/Å |            |  |  |
|------|------|------------|------|--------------------|------------|--|--|
| Si1  | C20  | 1.8749(11) | C19  | C14                | 1.4095(15) |  |  |
| Si1  | C26  | 1.8660(11) | C19  | C18                | 1.3964(15) |  |  |
| Si1  | C19  | 1.8534(11) | C14  | C13                | 1.4972(15) |  |  |
| Si1  | C2   | 1.8620(11) | C14  | C15                | 1.3959(15) |  |  |
| N32  | C5   | 1.3963(14) | C18  | C17                | 1.3825(16) |  |  |
| N32  | C34  | 1.4492(17) | C25  | C24                | 1.3887(17) |  |  |
| N32  | C33  | 1.4491(17) | C13  | C12                | 1.3999(16) |  |  |
| N35  | C16  | 1.3788(15) | C5   | C6                 | 1.4005(16) |  |  |
| N35  | C37  | 1.4503(18) | C5   | C4                 | 1.3982(16) |  |  |
| N35  | C36  | 1.4308(18) | C16  | C15                | 1.4042(16) |  |  |
| C20  | C25  | 1.3994(16) | C16  | C17                | 1.4055(17) |  |  |
| C20  | C21  | 1.3986(15) | C12  | C11                | 1.3815(17) |  |  |
| C26  | C27  | 1.3885(16) | C9   | C10                | 1.3790(18) |  |  |
| C26  | C31  | 1.3961(16) | C27  | C28                | 1.3870(17) |  |  |

| Aton | n Aton | n Length/Å | Aton | 1 Aton | ı Length/Å |
|------|--------|------------|------|--------|------------|
| C7   | C8     | 1.4909(15) | C21  | C22    | 1.3898(17) |
| C7   | C2     | 1.4095(15) | C11  | C10    | 1.3827(19) |
| C7   | C6     | 1.3959(15) | C31  | C30    | 1.3870(18) |
| C8   | C13    | 1.4124(15) | C24  | C23    | 1.385(2)   |
| C8   | C9     | 1.4025(16) | C30  | C29    | 1.377(2)   |
| C3   | C2     | 1.3909(15) | C22  | C23    | 1.377(2)   |
| C3   | C4     | 1.3867(16) | C29  | C28    | 1.3803(19) |

## Table S.17. Bond Angles in ° for 206a.

| Atom | Atom Atom Angle/° |     |            | Atom Atom Atom Angle/° |     |     |            |
|------|-------------------|-----|------------|------------------------|-----|-----|------------|
| C26  | Sil               | C20 | 108.00(5)  | C19                    | C14 | C13 | 121.94(9)  |
| C19  | Si1               | C20 | 110.70(5)  | C15                    | C14 | C19 | 120.09(10) |
| C19  | Si1               | C26 | 113.96(5)  | C15                    | C14 | C13 | 117.63(10) |
| C19  | Si1               | C2  | 102.46(5)  | C17                    | C18 | C19 | 122.79(10) |
| C2   | Sil               | C20 | 110.54(5)  | C24                    | C25 | C20 | 121.20(11) |
| C2   | Si1               | C26 | 111.14(5)  | C8                     | C13 | C14 | 126.09(10) |
| C5   | N32               | C34 | 118.13(10) | C12                    | C13 | C8  | 118.14(10) |
| C5   | N32               | C33 | 117.96(11) | C12                    | C13 | C14 | 115.76(10) |
| C34  | N32               | C33 | 114.26(10) | N32                    | C5  | C6  | 120.66(11) |
| C16  | N35               | C37 | 120.39(11) | N32                    | C5  | C4  | 121.87(11) |
| C16  | N35               | C36 | 119.76(11) | C4                     | C5  | C6  | 117.41(10) |
| C36  | N35               | C37 | 117.02(11) | N35                    | C16 | C15 | 121.11(11) |
| C25  | C20               | Si1 | 121.70(8)  | N35                    | C16 | C17 | 121.39(11) |
| C21  | C20               | Si1 | 120.73(9)  | C15                    | C16 | C17 | 117.46(10) |
| C21  | C20               | C25 | 117.55(10) | C7                     | C6  | C5  | 122.13(10) |
| C27  | C26               | Si1 | 121.89(8)  | C11                    | C12 | C13 | 122.47(11) |
| C27  | C26               | C31 | 117.73(10) | C14                    | C15 | C16 | 122.03(10) |
| C31  | C26               | Si1 | 120.31(9)  | C18                    | C17 | C16 | 120.28(11) |
| C2   | C7                | C8  | 122.35(10) | C10                    | C9  | C8  | 122.30(11) |
| C6   | C7                | C8  | 117.43(10) | C28                    | C27 | C26 | 120.97(11) |
| C6   | C7                | C2  | 120.17(10) | C3                     | C4  | C5  | 120.19(11) |
| C13  | C8                | C7  | 125.16(10) | C22                    | C21 | C20 | 121.43(12) |
| C9   | C8                | C7  | 116.51(10) | C12                    | C11 | C10 | 119.31(11) |
| C9   | C8                | C13 | 118.30(10) | C30                    | C31 | C26 | 121.35(11) |
| C4   | C3                | C2  | 123.11(11) | C23                    | C24 | C25 | 119.69(12) |
| C14  | C19               | Si1 | 120.37(8)  | C29                    | C30 | C31 | 119.86(12) |
| C18  | C19               | Si1 | 121.97(8)  | C23                    | C22 | C21 | 119.62(12) |
| C18  | C19               | C14 | 117.33(10) | C30                    | C29 | C28 | 119.72(11) |
|      |                   |     |            |                        |     |     |            |

| Atom Atom Atom Angle/° |    |     |            |  | Atom Atom Atom Angle/° |     |     |            |
|------------------------|----|-----|------------|--|------------------------|-----|-----|------------|
| C7                     | C2 | Sil | 119.79(8)  |  | C9                     | C10 | C11 | 119.48(11) |
| C3                     | C2 | Si1 | 123.12(8)  |  | C22                    | C23 | C24 | 120.46(12) |
| C3                     | C2 | C7  | 116.90(10) |  | C29                    | C28 | C27 | 120.35(12) |

**Table S.18.** Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^{2}$ ×10<sup>3</sup>) for **206a**. U<sub>eq</sub> is defined as 1/3 of the trace of the orthogonalised U<sub>ij</sub>.

| Atom | x        | V        | z        | U <sub>eq</sub> |
|------|----------|----------|----------|-----------------|
| H3   | 9200.95  | 4706.5   | 1718.87  | 24              |
| H18  | 7523.37  | 3691.84  | 5325.11  | 23              |
| H25  | 9137.88  | 4676.2   | 3801.25  | 27              |
| H6   | 9183.29  | 1341.19  | 297.92   | 24              |
| H12  | 5288.16  | 666.27   | 3824.19  | 28              |
| H15  | 7636.83  | -0.3     | 4552.04  | 24              |
| H17  | 8209.49  | 2111.52  | 6659.83  | 26              |
| H9   | 6613.57  | 1894.49  | 173.21   | 30              |
| H27  | 3956.41  | 3766.04  | 3944.31  | 29              |
| H4   | 11036.64 | 3875.75  | 415.71   | 26              |
| H21  | 4988.93  | 6494.24  | 3316.18  | 26              |
| H11  | 4232.26  | 284.48   | 2374.26  | 34              |
| H31  | 5308.94  | 5381.13  | 1073.6   | 35              |
| H24  | 9507.53  | 6367.58  | 4254.32  | 35              |
| H30  | 2966.37  | 6033.07  | 540.11   | 40              |
| H22  | 5341.98  | 8165.96  | 3832.21  | 35              |
| H29  | 1108.05  | 5582     | 1722.13  | 37              |
| H10  | 4890.54  | 917.43   | 532.39   | 35              |
| H34A | 12137.35 | 3220.33  | -1408.03 | 46              |
| H34B | 13352.48 | 1973.73  | -1340.48 | 46              |
| H34C | 12921.35 | 2712.44  | -286.53  | 46              |
| H23  | 7611.67  | 8112.52  | 4254.17  | 39              |
| H37A | 7821.38  | -1403.79 | 6082.64  | 51              |
| H37B | 9087.39  | -1811.08 | 6899.26  | 51              |
| H37C | 9403.74  | -1350.86 | 5622.21  | 51              |
| H33A | 10783.27 | 667.66   | -933.96  | 52              |
| H33B | 12029.83 | 959.25   | -1795.32 | 52              |
| H33C | 10420.04 | 1831.6   | -1790.82 | 52              |
| H28  | 1618.32  | 4415     | 3403.61  | 39              |
| H36A | 9695.99  | 188.35   | 7492.92  | 79              |
| H36B | 8776.52  | -629.15  | 8131.4   | 79              |
| H36C | 8042.37  | 757.1    | 7919.15  | 79              |
#### S.4 X-ray Structure of Compound 206g

9,9-diethyl- $N^6$ , $N^6$ , $N^{12}$ , $N^{12}$ -tetramethyl-9H-Single crystals of  $C_{26}H_{32}N_2Si$ , tribenzo[b,d,f]silepin-6,12-diamine (**206g**) were prepared by recrystallization from the dichloromethane/ethanol solution. A suitable crystal was selected, and the X-ray diffraction was collected on a XtaLAB AFC10 (RCD3): fixed-chi single diffractometer. The crystal was kept at 100 K during data collection. The data were collected using  $\omega$  scan in the  $\theta$  range of  $5.148 \le \theta \le 54.964$  deg. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods,<sup>[115]</sup> and expanded using Fourier techniques.<sup>[116]</sup> Hydrogen atoms were refined using the riding model. The final cycle of full-matrix leastsquares refinement on F<sup>2</sup> was based on 12122 observed reflections. Neutral atom scattering factors were taken from Cromer and Waber.<sup>[117]</sup> All calculations were performed using the Olex-2 crystallographic software package except for refinement,<sup>[118]</sup> which was performed using version 2018/3 of ShelXL (Sheldrick, 2015) of final refinement as well as the bond lengths and angles are summarized in the supporting information, and the numbering scheme employed is also shown in the supporting information, which were drawn with ORTEP at 50% probability ellipsoid.



#### Crystal structure determination of 206g

C<sub>26</sub>H<sub>32</sub>N<sub>2</sub>Si (M =400.62 g/mol): monoclinic, space group  $P2_1/n$  (no. 14), a = 8.6133(2) Å, b = 16.3209(5) Å, c = 15.8387(5) Å,  $\beta = 96.685(3)^\circ$ , V = 2211.42(11) Å<sup>3</sup>, Z = 4, T = 100 K,  $\mu$ (Mo K $\alpha$ ) = 0.121 mm<sup>-1</sup>, Dcalc = 1.203 g/cm<sup>3</sup>, 19729 reflections measured (5.148°  $\leq 2\theta \leq 54.964^\circ$ ),

5071 unique ( $R_{int} = 0.0368$ ,  $R_{sigma} = 0.0345$ ) which were used in all calculations. The final  $R_1$  was 0.0362 ( $I > 2\sigma(I)$ ) and  $wR_2$  was 0.0975 (all data).

| -                                           | -                                                             |
|---------------------------------------------|---------------------------------------------------------------|
| Empirical formula                           | $C_{26}H_{32}N_2Si$                                           |
| Formula weight                              | 400.62                                                        |
| Temperature/K                               | 100                                                           |
| Crystal system                              | monoclinic                                                    |
| Space group                                 | $P2_{1}/n$                                                    |
| a/Å                                         | 8.6133(2)                                                     |
| b/Å                                         | 16.3209(5)                                                    |
| $c/\text{\AA}$                              | 15.8387(5)                                                    |
| $\alpha/^{\circ}$                           | 90                                                            |
| $\beta/^{\circ}$                            | 96.685(3)                                                     |
| γ/°                                         | 90                                                            |
| <i>Volume</i> /Å <sup>3</sup>               | 2211.42(11)                                                   |
| Ζ                                           | 4                                                             |
| <i>Dcalc</i> g/cm <sup>3</sup>              | 1.203                                                         |
| $\mu/\mathrm{mm}^{-1}$                      | 0.121                                                         |
| <i>F</i> (000)                              | 864.0                                                         |
| Crystal size/mm <sup>3</sup>                | $0.197\times0.149\times0.136$                                 |
| Radiation                                   | Mo Ka ( $\lambda = 0.71073$ )                                 |
| $2\theta$ range for data collection/°       | 5.148 to 54.964                                               |
| Index ranges                                | $-11 \le h \le 11, -16 \le k \le 21, -20 \le l \le 20$        |
| Reflections collected                       | 19729                                                         |
| Independent reflections                     | 5071 [ $R_{\text{int}} = 0.0368, R_{\text{sigma}} = 0.0345$ ] |
| Data/restraints/parameters                  | 5071/0/268                                                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.066                                                         |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0362, wR_2 = 0.0944$                                 |
| Final R indexes [all data]                  | $R_1 = 0.0419, wR_2 = 0.0975$                                 |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.33/-0.29                                                    |
|                                             |                                                               |

| Table S.19. Crysta | l data and | l structure refinement | for <b>206g</b> . |
|--------------------|------------|------------------------|-------------------|
|--------------------|------------|------------------------|-------------------|

**Table S.20.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **206g**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x          | У         | Z         | U(eq)    |
|------|------------|-----------|-----------|----------|
| Si1  | 8864.6(4)  | 4027.0(2) | 7537.8(2) | 11.38(9) |
| N2   | 4500.1(12) | 6250.4(6) | 9280.7(6) | 15.4(2)  |
| N1   | 4470.6(12) | 3821.3(7) | 4248.3(6) | 17.2(2)  |

**Table S.20.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **206g**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x           | У         | z         | U(eq)   |
|------|-------------|-----------|-----------|---------|
| C6   | 7613.1(13)  | 3857.9(7) | 6510.9(7) | 12.4(2) |
| C7   | 6096.7(13)  | 3532.0(7) | 6495.8(7) | 11.9(2) |
| C15  | 6060.5(13)  | 4411.6(7) | 8258.2(7) | 11.5(2) |
| C18  | 5506.2(13)  | 3164.1(7) | 7260.0(7) | 11.5(2) |
| C14  | 7578.6(13)  | 4669.3(7) | 8141.5(7) | 13.0(2) |
| C16  | 5046.5(13)  | 4941.6(7) | 8623.6(7) | 12.7(2) |
| C5   | 8015.8(14)  | 4168.0(7) | 5740.8(8) | 14.7(2) |
| C4   | 7010.1(14)  | 4161.1(8) | 4994.1(8) | 15.2(2) |
| C19  | 4837.4(13)  | 2382.9(7) | 7156.3(8) | 14.2(2) |
| C3   | 5494.2(14)  | 3837.4(7) | 4980.4(7) | 13.8(2) |
| C22  | 4768.1(13)  | 3159.0(7) | 8685.3(7) | 13.9(2) |
| C23  | 5475.3(13)  | 3563.9(7) | 8049.4(7) | 11.6(2) |
| C13  | 8016.3(14)  | 5458.2(8) | 8426.5(8) | 15.7(2) |
| C8   | 5073.6(13)  | 3520.6(7) | 5746.5(7) | 13.2(2) |
| C24  | 10640.9(14) | 4625.8(8) | 7338.4(8) | 15.8(2) |
| C17  | 5498.1(14)  | 5731.2(7) | 8895.2(7) | 13.4(2) |
| C20  | 4142.9(14)  | 1997.5(8) | 7791.7(8) | 15.9(2) |
| C12  | 7027.6(14)  | 5980.0(8) | 8795.3(8) | 16.7(3) |
| C2   | 4903.4(15)  | 4191.5(8) | 3481.7(8) | 19.6(3) |
| C21  | 4107.4(14)  | 2388.9(8) | 8565.4(8) | 16.1(2) |
| C26  | 9502.4(14)  | 3084.2(8) | 8156.2(8) | 16.4(2) |
| C27  | 10375.1(15) | 3296.1(9) | 9029.9(8) | 22.1(3) |
| C9   | 2956.0(15)  | 5951.8(8) | 9403.5(8) | 19.5(3) |
| C1   | 2855.1(14)  | 3592.1(9) | 4281.9(8) | 19.8(3) |
| C25  | 11851.7(14) | 4124.5(8) | 6922.8(9) | 20.1(3) |
| C10  | 4517.6(17)  | 7117.8(8) | 9073.2(9) | 24.0(3) |
|      |             |           |           |         |

**Table S.21.** Anisotropic Displacement Parameters  $(Å^2 \times 10^3)$  for **206g**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U33       | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------|-----------------|-----------------|-----------------|
| Si1  | 10.05(15)       | 10.87(17)       | 13.03(16) | -0.61(12)       | 0.49(11)        | 0.14(11)        |
| N2   | 19.0(5)         | 12.2(5)         | 15.5(5)   | -1.8(4)         | 3.8(4)          | 2.3(4)          |
| N1   | 17.8(5)         | 20.8(6)         | 12.3(5)   | 1.5(4)          | -0.7(4)         | -4.0(4)         |

| C6  | 12.5(5) | 10.5(5) | 14.2(5) | -1.7(4) | 1.5(4)  | 1.9(4)  |
|-----|---------|---------|---------|---------|---------|---------|
| C7  | 14.5(5) | 8.5(5)  | 12.9(5) | -2.7(4) | 2.6(4)  | 1.2(4)  |
| C15 | 13.5(5) | 11.4(5) | 8.9(5)  | 0.5(4)  | -1.0(4) | 0.6(4)  |
| C18 | 9.9(5)  | 11.6(5) | 12.9(5) | 0.2(4)  | 0.8(4)  | 1.5(4)  |
| C14 | 14.0(5) | 12.8(6) | 11.7(5) | 0.0(4)  | -0.6(4) | 0.7(4)  |
| C16 | 13.1(5) | 14.1(6) | 10.6(5) | 0.4(4)  | 0.9(4)  | 0.8(4)  |
| C5  | 12.7(5) | 13.8(6) | 18.0(6) | -0.4(5) | 2.9(4)  | -0.3(4) |
| C4  | 17.9(6) | 14.5(6) | 13.6(6) | 0.5(4)  | 3.7(4)  | -0.5(5) |
| C19 | 14.0(5) | 12.9(6) | 15.4(6) | -2.0(4) | 0.8(4)  | 1.1(4)  |
| C3  | 16.8(6) | 10.3(5) | 13.8(5) | -1.9(4) | 0.0(4)  | 0.9(4)  |
| C22 | 14.4(5) | 14.2(6) | 13.0(5) | 0.2(4)  | 0.9(4)  | 1.8(4)  |
| C23 | 9.7(5)  | 11.6(5) | 12.8(5) | 0.2(4)  | -1.0(4) | 1.4(4)  |
| C13 | 13.5(5) | 15.0(6) | 18.4(6) | -1.5(5) | 0.6(4)  | -1.7(5) |
| C8  | 12.8(5) | 11.8(6) | 14.8(6) | -2.6(4) | 1.6(4)  | -1.4(4) |
| C24 | 12.9(5) | 15.0(6) | 19.3(6) | -1.6(5) | 0.8(4)  | -1.0(5) |
| C17 | 17.6(6) | 13.8(6) | 8.7(5)  | -0.1(4) | 0.8(4)  | 2.8(5)  |
| C20 | 16.4(5) | 10.4(6) | 20.5(6) | 0.7(5)  | 0.3(4)  | -1.5(4) |
| C12 | 19.1(6) | 12.0(6) | 18.5(6) | -3.4(5) | -0.1(5) | -1.9(5) |
| C2  | 22.9(6) | 21.8(7) | 13.6(6) | 3.1(5)  | 0.2(5)  | -1.4(5) |
| C21 | 16.0(5) | 15.7(6) | 17.0(6) | 4.1(5)  | 3.1(4)  | 0.2(5)  |
| C26 | 15.7(5) | 14.9(6) | 18.5(6) | 1.8(5)  | 1.3(4)  | 1.5(5)  |
| C27 | 22.3(6) | 24.6(7) | 18.6(6) | 3.9(5)  | -0.8(5) | 3.5(5)  |
| C9  | 17.6(6) | 20.7(7) | 20.7(6) | -3.7(5) | 4.0(5)  | 3.5(5)  |
| C1  | 16.8(6) | 24.4(7) | 17.1(6) | -1.1(5) | -2.5(5) | -2.2(5) |
| C25 | 13.4(6) | 22.5(7) | 24.9(7) | 0.0(5)  | 3.9(5)  | -0.2(5) |
| C10 | 34.3(7) | 14.6(6) | 24.4(7) | 1.4(5)  | 9.4(6)  | 6.8(5)  |

# Table S.22. Bond Lengths for 206g.

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å   |
|------|------|------------|------|------|------------|
| Si1  | C6   | 1.8643(12) | C15  | C23  | 1.4963(16) |
| Si1  | C14  | 1.8672(12) | C18  | C19  | 1.4010(17) |
| Si1  | C24  | 1.8730(12) | C18  | C23  | 1.4133(16) |
| Si1  | C26  | 1.8718(13) | C14  | C13  | 1.4016(17) |
| N2   | C17  | 1.3971(16) | C16  | C17  | 1.3993(17) |
| N2   | С9   | 1.4507(16) | C5   | C4   | 1.3823(17) |
| N2   | C10  | 1.4539(17) | C4   | C3   | 1.4063(17) |
| N1   | C3   | 1.3728(15) | C19  | C20  | 1.3807(17) |
| N1   | C2   | 1.4435(16) | C3   | C8   | 1.4048(17) |
| N1   | C1   | 1.4478(16) | C22  | C23  | 1.4017(16) |

Table S.22. Bond Lengths for 206g.

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å   |
|------|------|------------|------|------|------------|
| C6   | C7   | 1.4078(16) | C22  | C21  | 1.3836(17) |
| C6   | C5   | 1.4010(17) | C13  | C12  | 1.3811(18) |
| C7   | C18  | 1.4926(16) | C24  | C25  | 1.5330(17) |
| C7   | C8   | 1.3935(16) | C17  | C12  | 1.4049(17) |
| C15  | C14  | 1.4061(16) | C20  | C21  | 1.3855(18) |
| C15  | C16  | 1.4013(16) | C26  | C27  | 1.5354(17) |

# Table S.23. Bond Angles for 206g.

| Aton | n Aton | n Atom | Angle/°    | Aton | 1 Aton | n Atom | Angle/°    |
|------|--------|--------|------------|------|--------|--------|------------|
| C6   | Sil    | C14    | 102.28(5)  | C15  | C14    | Si1    | 121.04(9)  |
| C6   | Sil    | C24    | 109.32(5)  | C13  | C14    | Si1    | 121.82(9)  |
| C6   | Sil    | C26    | 116.07(6)  | C13  | C14    | C15    | 116.86(11) |
| C14  | Si1    | C24    | 109.78(6)  | C17  | C16    | C15    | 122.09(11) |
| C14  | Si1    | C26    | 110.43(5)  | C4   | C5     | C6     | 123.23(11) |
| C26  | Sil    | C24    | 108.75(6)  | C5   | C4     | C3     | 120.30(11) |
| C17  | N2     | C9     | 118.37(10) | C20  | C19    | C18    | 122.43(11) |
| C17  | N2     | C10    | 117.95(10) | N1   | C3     | C4     | 121.61(11) |
| C9   | N2     | C10    | 113.03(10) | N1   | C3     | C8     | 121.18(11) |
| C3   | N1     | C2     | 119.94(10) | C8   | C3     | C4     | 117.21(11) |
| C3   | N1     | C1     | 119.96(10) | C21  | C22    | C23    | 122.39(11) |
| C2   | N1     | C1     | 118.85(10) | C18  | C23    | C15    | 125.58(10) |
| C7   | C6     | Si1    | 120.79(9)  | C22  | C23    | C15    | 116.13(10) |
| C5   | C6     | Si1    | 121.97(9)  | C22  | C23    | C18    | 118.20(11) |
| C5   | C6     | C7     | 116.42(10) | C12  | C13    | C14    | 123.14(11) |
| C6   | C7     | C18    | 122.77(10) | C7   | C8     | C3     | 121.98(11) |
| C8   | C7     | C6     | 120.86(11) | C25  | C24    | Si1    | 113.82(9)  |
| C8   | C7     | C18    | 116.35(10) | N2   | C17    | C16    | 121.99(11) |
| C14  | C15    | C23    | 122.82(10) | N2   | C17    | C12    | 120.44(11) |
| C16  | C15    | C14    | 120.23(11) | C16  | C17    | C12    | 117.53(11) |
| C16  | C15    | C23    | 116.88(10) | C19  | C20    | C21    | 119.38(11) |
| C19  | C18    | C7     | 116.44(10) | C13  | C12    | C17    | 120.13(11) |
| C19  | C18    | C23    | 118.30(10) | C22  | C21    | C20    | 119.29(11) |
| C23  | C18    | C7     | 125.11(10) | C27  | C26    | Si1    | 111.68(9)  |

| Atom | x        | У       | Z       | U(eq) |
|------|----------|---------|---------|-------|
| H16  | 4020     | 4759.16 | 8688.98 | 15    |
| Н5   | 9029.93  | 4394.11 | 5731.28 | 18    |
| H4   | 7344.42  | 4376.01 | 4487.88 | 18    |
| H19  | 4862.82  | 2108.04 | 6629.36 | 17    |
| H22  | 4741.34  | 3423.04 | 9217.97 | 17    |
| H13  | 9042.17  | 5642.98 | 8362.92 | 19    |
| H8   | 4061.16  | 3291.75 | 5754    | 16    |
| H24A | 10310.89 | 5097.26 | 6966.87 | 19    |
| H24B | 11140.43 | 4846.35 | 7885.97 | 19    |
| H20  | 3693.4   | 1468.88 | 7699.19 | 19    |
| H12  | 7382.33  | 6508.05 | 8981.83 | 20    |
| H2A  | 5063.87  | 4780.9  | 3572.48 | 29    |
| H2B  | 4067.62  | 4103.39 | 3015.49 | 29    |
| H2C  | 5872.49  | 3941.7  | 3336.69 | 29    |
| H21  | 3634.66  | 2131.34 | 9008.84 | 19    |
| H26A | 8574.26  | 2747.05 | 8234.4  | 20    |
| H26B | 10194.3  | 2755.75 | 7830.57 | 20    |
| H27A | 11343.74 | 3587.78 | 8953.97 | 33    |
| H27B | 10625.77 | 2790.69 | 9351.12 | 33    |
| H27C | 9712.99  | 3645.27 | 9342.26 | 33    |
| H9A  | 2333.11  | 5883.1  | 8849.67 | 29    |
| H9B  | 2441.42  | 6347.08 | 9744.72 | 29    |
| H9C  | 3050.26  | 5423.52 | 9699.18 | 29    |
| H1A  | 2805.46  | 3023.78 | 4476.5  | 30    |
| H1B  | 2275.4   | 3643.49 | 3714.15 | 30    |
| H1C  | 2390.86  | 3954.09 | 4677.79 | 30    |
| H25A | 11384.04 | 3926.04 | 6366.68 | 30    |
| H25B | 12188.81 | 3656.61 | 7286.46 | 30    |
| H25C | 12756.28 | 4470.5  | 6849.53 | 30    |
| H10A | 5601.41  | 7305.57 | 9089.68 | 36    |
| H10B | 3992.48  | 7427.67 | 9487.71 | 36    |
| H10C | 3970.58  | 7204.94 | 8502.42 | 36    |

**Table S.24.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **206g**.

## **S.5 X-ray Structure of Compound 209**

A single crystal of  $(N^6, N^6, N^{12}, N^{12}$ -tetramethyl-9,9-diphenyl-9*H*-6,12-diamine) tribenzo[*b*,*d*,*f*]bissilepin (C<sub>62</sub>H<sub>58</sub>N<sub>4</sub>Si<sub>2</sub>) (**209**) was prepared by recrystallization from the

dichloromethane/ethanol solution. A suitable crystal was selected, and the X-ray diffraction was collected on an Rigaku AFC HyPix-6000 diffractometer: fixed-chi single diffractometer with graphite monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$ A). The crystal was kept at 173 K during data collection. The data were collected using  $\omega$  scan in the  $\theta$  range of 4.476  $\leq 2\theta \leq$  54.966 deg. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods,<sup>[115]</sup> and expanded using Fourier techniques.<sup>[116]</sup> Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F<sup>2</sup> was based on 26837 observed reflections. Neutral atom scattering factors were taken from Cromer and Waber.<sup>[117]</sup> All calculations were performed using the Olex-2 crystallographic software package except for refinement,<sup>[118]</sup> which was performed using version 2018/3 of ShelXL (Sheldrick, 2015) of final refinement as well as the bond lengths and angles are summarized in the supporting information, and the numbering scheme employed is also shown in the supporting information, which were drawn with ORTEP at 50% probability ellipsoid.



Table S.25. Crystal data and structure refinement for 209.

| Empirical formula | $C_{62}H_{58}N_4Si_2$ |
|-------------------|-----------------------|
| Formula weight    | 915.30                |
| Temperature/K     | 173                   |
| Crystal system    | monoclinic            |
| Space group       | $P2_{1}/n$            |
| a/Å               | 15.3334(8)            |

| b/Å                                         | 11.1613(8)                                             |
|---------------------------------------------|--------------------------------------------------------|
| $c/\text{\AA}$                              | 15.7358(9)                                             |
| $\alpha/^{\circ}$                           | 90                                                     |
| $\beta/^{\circ}$                            | 91.890(5)                                              |
| γ/°                                         | 90                                                     |
| <i>Volume</i> /Å <sup>3</sup>               | 2691.6(3)                                              |
| Ζ                                           | 50                                                     |
| <i>Dcalc</i> g/cm <sup>3</sup>              | 28.234                                                 |
| $\mu/\text{mm}^{-1}$                        | 2.689                                                  |
| <i>F</i> (000)                              | 24300.0                                                |
| Crystal size/mm <sup>3</sup>                | $0.24 \times 0.09 \times 0.09$                         |
| Radiation                                   | Mo K $\alpha$ ( $\lambda = 0.71073$ )                  |
| $2\theta$ range for data collection/°       | 4.476 to 54.966                                        |
| Index ranges                                | $-19 \le h \le 19, -14 \le k \le 13, -20 \le l \le 20$ |
| Reflections collected                       | 26837                                                  |
| Independent reflections                     | 6128 [ $R_{int} = 0.0504, R_{sigma} = 0.0491$ ]        |
| Data/restraints/parameters                  | 6128/108/366                                           |
| Goodness-of-fit on F <sup>2</sup>           | 1.052                                                  |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0615, wR_2 = 0.1631$                          |
| Final R indexes [all data]                  | $R_1 = 0.0791, wR_2 = 0.1720$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.50/-0.27                                             |

| <b>Table S.26.</b> Fractional Atomic Coordinates (×10 <sup>4</sup> ) and Equivalent Isotropic Displacement                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters (Å <sup>2</sup> ×10 <sup>3</sup> ) for <b>209</b> . U <sub>eq</sub> is defined as 1/3 of the trace of the orthogonalised U <sub>IJ</sub> |
| tensor.                                                                                                                                             |

| Atom | x          | У          | z          | U(eq)     |
|------|------------|------------|------------|-----------|
| Sil  | 5956.9(3)  | 4776.0(5)  | 7395.1(4)  | 36.19(17) |
| C9   | 5105.9(11) | 5771.0(16) | 5709.9(12) | 31.5(4)   |
| C7   | 4686.3(11) | 4661.1(16) | 5801.7(12) | 30.7(4)   |
| C10  | 5273.0(12) | 6668.1(16) | 6394.2(13) | 34.5(4)   |
| C8   | 4597.5(12) | 3937.8(16) | 5088.8(13) | 32.0(4)   |
| C6   | 4326.6(12) | 4191.7(16) | 6605.8(13) | 33.7(4)   |
| C1   | 4849.4(13) | 4082.3(17) | 7350.8(13) | 36.2(4)   |
| C15  | 5728.6(13) | 6372.9(18) | 7147.2(14) | 37.9(4)   |
| C5   | 3475.1(14) | 3756.8(19) | 6569.8(14) | 40.8(5)   |
| C11  | 5015.6(14) | 7847.7(18) | 6222.0(16) | 44.1(5)   |
| C2   | 4479.0(15) | 3512(2)    | 8037.9(14) | 44.9(5)   |
| N2   | 4930.8(19) | 9946.6(19) | 6589(2)    | 82.1(9)   |
| C20  | 6461.4(14) | 4569(2)    | 8480.3(14) | 43.7(5)   |
|      |            |            |            |           |

| x          | У                                                                                                                                                                                                                                                                                                                                               | z                                                                                                                                                                                                                                                                                                                                                                                                                   | U(eq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2281.8(15) | 2707(3)                                                                                                                                                                                                                                                                                                                                         | 7206.1(17)                                                                                                                                                                                                                                                                                                                                                                                                          | 76.7(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5934.7(15) | 7320(2)                                                                                                                                                                                                                                                                                                                                         | 7701.7(17) 51.5(                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3116.9(15) | 3176(2)                                                                                                                                                                                                                                                                                                                                         | 7266.7(15)                                                                                                                                                                                                                                                                                                                                                                                                          | 49.2(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5203.0(16) | 8767(2)                                                                                                                                                                                                                                                                                                                                         | 6786.8(19)                                                                                                                                                                                                                                                                                                                                                                                                          | 55.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3638.4(17) | 3072(2)                                                                                                                                                                                                                                                                                                                                         | 8000.4(15)                                                                                                                                                                                                                                                                                                                                                                                                          | 51.5(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6072.3(16) | 5018(2)                                                                                                                                                                                                                                                                                                                                         | 9204.0(15)                                                                                                                                                                                                                                                                                                                                                                                                          | 53.6(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5677.1(17) | 8493(2)                                                                                                                                                                                                                                                                                                                                         | 7515(2)                                                                                                                                                                                                                                                                                                                                                                                                             | 61.1(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7227.4(17) | 3914(3)                                                                                                                                                                                                                                                                                                                                         | 8607.7(16)                                                                                                                                                                                                                                                                                                                                                                                                          | 60.0(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6428.8(19) | 4813(3)                                                                                                                                                                                                                                                                                                                                         | 10006.9(16)                                                                                                                                                                                                                                                                                                                                                                                                         | 67.3(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1658.8(17) | 3185(3)                                                                                                                                                                                                                                                                                                                                         | 6612(2)                                                                                                                                                                                                                                                                                                                                                                                                             | 78.0(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7587(2)    | 3721(4)                                                                                                                                                                                                                                                                                                                                         | 9413.4(19)                                                                                                                                                                                                                                                                                                                                                                                                          | 80.1(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1986(2)    | 1923(3)                                                                                                                                                                                                                                                                                                                                         | 7851(2)                                                                                                                                                                                                                                                                                                                                                                                                             | 87.1(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7181(2)    | 4163(4)                                                                                                                                                                                                                                                                                                                                         | 10111.8(18)                                                                                                                                                                                                                                                                                                                                                                                                         | 78.2(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4973(4)    | 10789(3)                                                                                                                                                                                                                                                                                                                                        | 7274(3)                                                                                                                                                                                                                                                                                                                                                                                                             | 138(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4224(4)    | 10117(3)                                                                                                                                                                                                                                                                                                                                        | 5980(4)                                                                                                                                                                                                                                                                                                                                                                                                             | 152(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7873(9)    | 4662(19)                                                                                                                                                                                                                                                                                                                                        | 5616(7)                                                                                                                                                                                                                                                                                                                                                                                                             | 92(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7810(9)    | 3520(20)                                                                                                                                                                                                                                                                                                                                        | 5317(8)                                                                                                                                                                                                                                                                                                                                                                                                             | 99(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6666(8)    | 3127(12)                                                                                                                                                                                                                                                                                                                                        | 6228(10)                                                                                                                                                                                                                                                                                                                                                                                                            | 64(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7328(8)    | 5034(13)                                                                                                                                                                                                                                                                                                                                        | 6243(9)                                                                                                                                                                                                                                                                                                                                                                                                             | 61(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6666(13)   | 4270(11)                                                                                                                                                                                                                                                                                                                                        | 6536(12)                                                                                                                                                                                                                                                                                                                                                                                                            | 38(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7229(10)   | 2740(20)                                                                                                                                                                                                                                                                                                                                        | 5608(11)                                                                                                                                                                                                                                                                                                                                                                                                            | 96(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7028(8)    | 2188(12)                                                                                                                                                                                                                                                                                                                                        | 5856(8)                                                                                                                                                                                                                                                                                                                                                                                                             | 73(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6589(6)    | 2744(11)                                                                                                                                                                                                                                                                                                                                        | 6490(7)                                                                                                                                                                                                                                                                                                                                                                                                             | 51(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7130(8)    | 4628(13)                                                                                                                                                                                                                                                                                                                                        | 6047(8)                                                                                                                                                                                                                                                                                                                                                                                                             | 60(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7510(12)   | 2820(17)                                                                                                                                                                                                                                                                                                                                        | 5317(7)                                                                                                                                                                                                                                                                                                                                                                                                             | 89(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7569(11)   | 4047(16)                                                                                                                                                                                                                                                                                                                                        | 5394(9)                                                                                                                                                                                                                                                                                                                                                                                                             | 97(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6662(11)   | 3957(13)                                                                                                                                                                                                                                                                                                                                        | 6611(11)                                                                                                                                                                                                                                                                                                                                                                                                            | 40(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | x<br>2281.8(15)<br>5934.7(15)<br>3116.9(15)<br>5203.0(16)<br>3638.4(17)<br>6072.3(16)<br>5677.1(17)<br>7227.4(17)<br>6428.8(19)<br>1658.8(17)<br>7587(2)<br>1986(2)<br>7181(2)<br>4973(4)<br>4224(4)<br>7873(9)<br>7810(9)<br>66666(8)<br>7328(8)<br>66666(13)<br>7229(10)<br>7028(8)<br>6589(6)<br>7130(8)<br>7510(12)<br>7569(11)<br>6662(11) | x $y$ 2281.8(15)2707(3)5934.7(15)7320(2)3116.9(15)3176(2)5203.0(16)8767(2)3638.4(17)3072(2)6072.3(16)5018(2)5677.1(17)8493(2)7227.4(17)3914(3)6428.8(19)4813(3)1658.8(17)3185(3)7587(2)3721(4)1986(2)1923(3)7181(2)4163(4)4973(4)10789(3)4224(4)10117(3)7873(9)4662(19)7810(9)3520(20)6666(13)4270(11)7229(10)2740(20)7028(8)2188(12)6589(6)2744(11)7130(8)4628(13)7510(12)2820(17)7569(11)4047(16)6662(11)3957(13) | x $y$ $z$ 2281.8(15)2707(3)7206.1(17)5934.7(15)7320(2)7701.7(17)3116.9(15)3176(2)7266.7(15)5203.0(16)8767(2)6786.8(19)3638.4(17)3072(2)8000.4(15)6072.3(16)5018(2)9204.0(15)5677.1(17)8493(2)7515(2)7227.4(17)3914(3)8607.7(16)6428.8(19)4813(3)10006.9(16)1658.8(17)3185(3)6612(2)7587(2)3721(4)9413.4(19)1986(2)1923(3)7851(2)7181(2)4163(4)10111.8(18)4973(4)10789(3)7274(3)4224(4)10117(3)5980(4)7873(9)4662(19)5616(7)7810(9)3520(20)5317(8)6666(8)3127(12)6228(10)7328(8)5034(13)6243(9)6666(13)4270(11)6536(12)7229(10)2740(20)5608(11)7028(8)2188(12)5856(8)6589(6)2744(11)6490(7)7130(8)4628(13)6047(8)7510(12)2820(17)5317(7)7569(11)4047(16)5394(9)6662(11)3957(13)6611(11) |

**Table S.27.** Anisotropic Displacement Parameters (×10<sup>4</sup>) for **209**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U11      | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Si1  | 32.2(3)  | 38.9(3)         | 38.0(3)         | -6.0(2)         | 8.4(2)          | 5.8(2)          |
| С9   | 26.8(8)  | 24.5(9)         | 43.3(10)        | 1.7(8)          | 5.8(7)          | 2.3(7)          |
| C7   | 27.6(9)  | 24.5(9)         | 40.2(10)        | 3.0(7)          | 5.8(7)          | 1.7(7)          |
| C10  | 29.7(9)  | 26.4(9)         | 48.4(11)        | -4.2(8)         | 14.9(8)         | -1.3(7)         |
| C8   | 28.7(9)  | 22.3(8)         | 45.4(11)        | 3.3(8)          | 5.3(8)          | -3.3(7)         |
| C6   | 35.4(9)  | 22.8(9)         | 43.6(11)        | 1.2(8)          | 12.1(8)         | 1.0(7)          |
| C1   | 40.2(10) | 26.4(9)         | 42.6(11)        | -1.3(8)         | 11.3(8)         | 2.0(8)          |

| Atom | U11      | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C15  | 31.4(9)  | 34.9(10)        | 48.0(11)        | -10.2(9)        | 11.3(8)         | -4.1(8)         |
| C5   | 38.3(10) | 37.1(11)        | 47.8(12)        | 2.9(9)          | 10.5(9)         | -6.5(9)         |
| C11  | 41.3(11) | 26.2(10)        | 65.9(14)        | -1.2(9)         | 17.1(10)        | 1.4(8)          |
| C2   | 55.1(13) | 41.1(12)        | 38.9(11)        | -0.1(9)         | 9.1(9)          | 0.3(10)         |
| N2   | 84.1(17) | 26.5(10)        | 138(3)          | -21.5(13)       | 38.7(17)        | 0.2(11)         |
| C20  | 38.5(11) | 53.7(13)        | 39.4(11)        | -5.4(10)        | 6.6(8)          | 3.4(10)         |
| N1   | 54.5(13) | 99(2)           | 77.9(16)        | 21.8(14)        | 13.6(12)        | -36.7(13)       |
| C14  | 46.9(12) | 51.9(14)        | 56.5(14)        | -20.7(11)       | 13.1(10)        | -11.7(10)       |
| C4   | 47.1(12) | 45.3(13)        | 56.2(14)        | 1.8(10)         | 19.0(10)        | -12.2(10)       |
| C12  | 52.5(13) | 29.6(11)        | 84.7(18)        | -11.6(11)       | 28.5(13)        | -4.0(10)        |
| C3   | 64.8(15) | 44.9(13)        | 45.9(13)        | 4.3(10)         | 20.3(11)        | -10.9(11)       |
| C25  | 44.0(12) | 71.0(17)        | 46.3(13)        | -15.1(12)       | 10.7(10)        | -1.6(11)        |
| C13  | 56.8(14) | 42.1(13)        | 86.1(19)        | -32.9(13)       | 29.0(13)        | -16.3(11)       |
| C21  | 51.3(14) | 80.4(19)        | 48.6(14)        | 2.5(13)         | 7.1(11)         | 18.6(13)        |
| C24  | 63.8(16) | 97(2)           | 42.0(13)        | -13.6(14)       | 13.9(12)        | -15.2(16)       |
| C17  | 42.0(14) | 83(2)           | 110(3)          | -3.2(19)        | 20.3(16)        | -12.7(14)       |
| C22  | 62.2(17) | 123(3)          | 54.8(16)        | 13.1(17)        | -3.5(13)        | 23.9(18)        |
| C16  | 75(2)    | 84(2)           | 105(3)          | 12.8(19)        | 45.3(19)        | -29.8(17)       |
| C23  | 68.2(19) | 120(3)          | 46.5(15)        | 8.8(17)         | -2.8(13)        | -6.7(19)        |
| C19  | 243(6)   | 36.0(17)        | 139(4)          | -22(2)          | 72(4)           | 10(3)           |
| C18  | 169(5)   | 45(2)           | 240(7)          | 8(3)            | -45(5)          | 43(3)           |
| C28  | 76(6)    | 144(10)         | 60(5)           | 14(6)           | 32(4)           | 41(6)           |
| C29  | 78(6)    | 165(13)         | 55(5)           | -21(7)          | 12(4)           | 65(7)           |
| C31  | 67(4)    | 52(5)           | 74(7)           | -15(5)          | 2(4)            | 24(4)           |
| C27  | 45(5)    | 79(6)           | 60(6)           | 11(4)           | 23(4)           | 15(4)           |
| C26  | 46(4)    | 37(5)           | 31(4)           | 5(4)            | 0(3)            | 25(4)           |
| C30  | 95(8)    | 124(11)         | 69(9)           | -52(8)          | -2(5)           | 51(7)           |
| C36  | 69(5)    | 86(6)           | 63(5)           | -29(4)          | -8(3)           | 45(4)           |
| C37  | 47(3)    | 51(5)           | 55(5)           | -15(3)          | 1(3)            | 23(3)           |
| C33  | 50(5)    | 76(6)           | 55(5)           | 10(4)           | 20(4)           | 24(4)           |
| C35  | 105(9)   | 128(8)          | 37(4)           | -3(5)           | 17(4)           | 79(7)           |
| C34  | 105(9)   | 123(8)          | 64(6)           | 28(6)           | 48(6)           | 70(7)           |
| C32  | 35(3)    | 49(6)           | 37(4)           | 2(5)            | 4(3)            | 27(4)           |

# Table S.28. Bond Lengths in Å for 209.Atom Atom Length/Å

| Atom | Atom | Length/Å | Aton | 1 Aton | n Length/Å |
|------|------|----------|------|--------|------------|
| Si1  | C1   | 1.866(2) | C20  | C21    | 1.392(3)   |
| Si1  | C15  | 1.855(2) | N1   | C4     | 1.384(3)   |

| Atom | Atom            | Length/Å  | Atom | Atom | Length/Å  |
|------|-----------------|-----------|------|------|-----------|
| Si1  | C20             | 1.866(2)  | N1   | C17  | 1.419(4)  |
| Si1  | C26             | 1.852(17) | N1   | C16  | 1.426(4)  |
| Si1  | C32             | 1.901(16) | C14  | C13  | 1.396(4)  |
| C9   | C7              | 1.406(3)  | C4   | C3   | 1.387(4)  |
| C9   | C10             | 1.486(3)  | C12  | C13  | 1.371(4)  |
| C9   | C8 <sup>1</sup> | 1.389(3)  | C25  | C24  | 1.379(4)  |
| C7   | C8              | 1.385(3)  | C21  | C22  | 1.382(4)  |
| C7   | C6              | 1.492(3)  | C24  | C23  | 1.369(5)  |
| C10  | C15             | 1.395(3)  | C22  | C23  | 1.372(4)  |
| C10  | C11             | 1.398(3)  | C28  | C29  | 1.366(17) |
| C6   | C1              | 1.404(3)  | C28  | C27  | 1.378(13) |
| C6   | C5              | 1.392(3)  | C29  | C30  | 1.335(18) |
| C1   | C2              | 1.392(3)  | C31  | C26  | 1.364(14) |
| C15  | C14             | 1.400(3)  | C31  | C30  | 1.393(15) |
| C5   | C4              | 1.401(3)  | C27  | C26  | 1.414(17) |
| C11  | C12             | 1.382(3)  | C36  | C37  | 1.370(11) |
| C2   | C3              | 1.379(3)  | C36  | C35  | 1.343(15) |
| N2   | C12             | 1.412(3)  | C37  | C32  | 1.370(13) |
| N2   | C19             | 1.431(5)  | C33  | C34  | 1.406(13) |
| N2   | C18             | 1.435(6)  | C33  | C32  | 1.382(15) |
| C20  | C25             | 1.396(3)  | C35  | C34  | 1.378(17) |

# Table S.29. Bond Angles in ° for 209.

| Aton | om Atom Atom Angle/° Atom Atom |     |            |     | Atom Atom Atom Angle/° |     |            |
|------|--------------------------------|-----|------------|-----|------------------------|-----|------------|
| C1   | Si1                            | C20 | 109.41(10) | C21 | C20                    | Si1 | 121.28(17) |
| C1   | Si1                            | C32 | 108.2(6)   | C21 | C20                    | C25 | 116.9(2)   |
| C15  | Si1                            | C1  | 103.04(9)  | C4  | N1                     | C17 | 120.3(2)   |
| C15  | Si1                            | C20 | 112.40(10) | C4  | N1                     | C16 | 119.9(3)   |
| C15  | Si1                            | C32 | 115.7(5)   | C17 | N1                     | C16 | 118.5(2)   |
| C20  | Si1                            | C32 | 107.9(6)   | C13 | C14                    | C15 | 121.3(3)   |
| C26  | Si1                            | C1  | 113.7(6)   | N1  | C4                     | C5  | 120.4(2)   |
| C26  | Si1                            | C15 | 104.5(4)   | N1  | C4                     | C3  | 122.2(2)   |
| C26  | Si1                            | C20 | 113.3(6)   | C3  | C4                     | C5  | 117.4(2)   |
| C7   | C9                             | C10 | 126.00(17) | C11 | C12                    | N2  | 119.8(3)   |
| C81  | С9                             | C7  | 117.63(17) | C13 | C12                    | C11 | 117.7(2)   |
| C81  | C9                             | C10 | 116.36(16) | C13 | C12                    | N2  | 122.5(2)   |
| C9   | C7                             | C6  | 125.45(17) | C2  | C3                     | C4  | 121.2(2)   |

# Atom Atom Atom Angle/°

## Atom Atom Atom Angle/°

| C8  | C7  | C9  | 117.62(17) | C24 | C25 | C20 | 121.4(2)  |
|-----|-----|-----|------------|-----|-----|-----|-----------|
| C8  | C7  | C6  | 116.94(16) | C12 | C13 | C14 | 121.6(2)  |
| C15 | C10 | С9  | 121.71(17) | C22 | C21 | C20 | 121.5(2)  |
| C15 | C10 | C11 | 121.14(19) | C23 | C24 | C25 | 120.4(2)  |
| C11 | C10 | C9  | 116.94(19) | C23 | C22 | C21 | 120.1(3)  |
| C7  | C8  | C91 | 124.75(17) | C24 | C23 | C22 | 119.7(3)  |
| C1  | C6  | C7  | 121.47(17) | C29 | C28 | C27 | 119.4(11) |
| C5  | C6  | C7  | 117.40(18) | C30 | C29 | C28 | 122.0(10) |
| C5  | C6  | C1  | 120.84(18) | C26 | C31 | C30 | 123.1(12) |
| C6  | C1  | Si1 | 119.29(14) | C28 | C27 | C26 | 120.7(11) |
| C2  | C1  | Si1 | 123.71(17) | C31 | C26 | Si1 | 123.4(11) |
| C2  | C1  | C6  | 116.89(19) | C31 | C26 | C27 | 116.1(13) |
| C10 | C15 | Si1 | 119.42(14) | C27 | C26 | Si1 | 120.0(10) |
| C10 | C15 | C14 | 116.6(2)   | C29 | C30 | C31 | 118.3(12) |
| C14 | C15 | Si1 | 123.85(19) | C35 | C36 | C37 | 121.0(9)  |
| C6  | C5  | C4  | 121.4(2)   | C36 | C37 | C32 | 120.6(10) |
| C12 | C11 | C10 | 121.6(2)   | C32 | C33 | C34 | 119.4(10) |
| C3  | C2  | C1  | 122.3(2)   | C36 | C35 | C34 | 120.2(8)  |
| C12 | N2  | C19 | 116.1(3)   | C35 | C34 | C33 | 119.4(10) |
| C12 | N2  | C18 | 118.8(3)   | C37 | C32 | Si1 | 121.4(9)  |
| C19 | N2  | C18 | 115.4(4)   | C37 | C32 | C33 | 119.2(12) |
| C25 | C20 | Si1 | 121.79(18) | C33 | C32 | Sil | 118.3(8)  |

**Table S.30.** Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **209**. U<sub>eq</sub> is defined as 1/3 of the trace of the orthogonalised U<sub>ij</sub>.

| Atom | x       | у       | z       | U(eq) |
|------|---------|---------|---------|-------|
| H8   | 4313.06 | 3188.15 | 5150.62 | 38    |
| H5   | 3129.74 | 3855.61 | 6062.21 | 49    |
| H11  | 4704.64 | 8020.91 | 5704.36 | 53    |
| H2   | 4817.11 | 3423.73 | 8550.89 | 54    |
| H14  | 6256.38 | 7161.12 | 8215.65 | 62    |
| H3   | 3412.28 | 2690.15 | 8485.66 | 62    |
| H25  | 5550.85 | 5473.42 | 9142.14 | 64    |
| H13  | 5834.22 | 9115.89 | 7901.6  | 73    |
| H21  | 7509.86 | 3593.41 | 8130    | 72    |

| Atom | x       | У        | z        | U(eq) |
|------|---------|----------|----------|-------|
| H24  | 6150.46 | 5124.67  | 10489.86 | 81    |
| H17A | 1625.1  | 4056.1   | 6684.26  | 117   |
| H17B | 1086.17 | 2829.3   | 6707.43  | 117   |
| H17C | 1834.93 | 3001.27  | 6033.16  | 117   |
| H22  | 8114.65 | 3281.31  | 9483.41  | 96    |
| H16A | 2417.79 | 1286.95  | 7953.9   | 131   |
| H16B | 1427.69 | 1566.16  | 7666.6   | 131   |
| H16C | 1910.51 | 2376.38  | 8377.04  | 131   |
| H23  | 7422.47 | 4017.69  | 10666.2  | 94    |
| H19A | 4633.77 | 10486.99 | 7745.85  | 207   |
| H19B | 4730.7  | 11558.2  | 7079.57  | 207   |
| H19C | 5581.78 | 10899.36 | 7465.95  | 207   |
| H18A | 4402.09 | 9847.58  | 5419.23  | 228   |
| H18B | 4069.44 | 10968.56 | 5953.65  | 228   |
| H18C | 3717.44 | 9651.56  | 6152.45  | 228   |
| H28  | 8289.26 | 5198.5   | 5393.46  | 111   |
| H29  | 8192.23 | 3262.29  | 4888.66  | 119   |
| H31  | 6263.82 | 2569.13  | 6448.24  | 77    |
| H27  | 7397.86 | 5811.46  | 6480.74  | 73    |
| H30  | 7199.21 | 1942.19  | 5396.39  | 116   |
| H36  | 6990.92 | 1342.19  | 5796.84  | 88    |
| H37  | 6231.92 | 2285.18  | 6849.09  | 61    |
| H33  | 7156.14 | 5475.24  | 6100.61  | 72    |
| H35  | 7810.23 | 2419.88  | 4881.45  | 107   |
| H34  | 7903.79 | 4496.73  | 5008.72  | 116   |

#### S.6 X-ray Structure of Compound 219

A single crystal of 3,17-dimethoxy- $N^7$ , $N^7$ , $N^{13}$ , $N^{13}$ -tetramethyl-10,10-diphenyl-10*H*-dibenzo[*b*,*f*] triphenyleno[2,3-*d*]silepin-7,13-diamine (C<sub>48</sub>H<sub>42</sub>N<sub>2</sub>O<sub>2</sub>Si) (**219**) was prepared by recrystallization from the dichloromethane/ethanol solution. A suitable crystal was selected, and the X-ray diffraction was collected on an Rigaku AFC HyPix-6000 diffractometer: fixed-chi single diffractometer with graphite monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073A$ ). The crystal was kept at 100 K during data collection. The data were collected using  $\omega$  scan in the  $\theta$  range of 4.038  $\leq \theta \leq$  54.968 deg. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods,<sup>[115]</sup> and expanded using Fourier techniques.<sup>[116]</sup> Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F<sup>2</sup> was based on 44667 observed reflections. Neutral atom scattering factors were taken from Cromer and Waber.<sup>[117]</sup> All calculations were performed using the Olex-2 crystallographic software package except for refinement,<sup>[118]</sup> which was performed

using version 2018/3 of ShelXL (Sheldrick, 2015) of final refinement as well as the bond lengths and angles are summarized in the supporting information, and the numbering scheme employed is also shown in the supporting information, which were drawn with ORTEP at 50% probability ellipsoid.



### Crystal structure determination of 219

 $C_{48}H_{42}N_2O_2Si \ (M = 706.92 \text{ g/mol}): \text{monoclinic, space group } P2_1/n \ (\text{no. 14}), a = 9.1920(3) \text{ Å}, b = 20.3292(6) \text{ Å}, c = 20.1781(5) \text{ Å}, \beta = 90.337(2), V = 3770.54(19) \text{ Å}^3, Z = 4, T = 100 \text{ K}, \mu(\text{Mo} \text{ K}_{\alpha}) = 0.105 \text{ mm}^{-1}, Dcalc = 1.245 \text{ g/cm}^3, 44667 \text{ reflections measured } (4.038^\circ \le 2\theta \le 54.968^\circ), 8637 \text{ unique } (R_{\text{int}} = 0.0329, R_{\text{sigma}} = 0.0259) \text{ which were used in all calculations. The final } R_1 \text{ was } 0.0389 \ (I > 2\sigma(I)) \text{ and } wR_2 \text{ was } 0.1042 \ (\text{all data}).$ 

| Table S.31. Crystal data and structure refinement for 219 |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| Empirical formula | $C_{48}H_{42}N_2O_2Si$ |
|-------------------|------------------------|
| Formula weight    | 706.92                 |
| Temperature/K     | 100                    |
| Crystal system    | monoclinic             |
| Space group       | $P2_{1}/n$             |
| a/Å               | 9.1920(3)              |
| b/Å               | 20.3292(6)             |
| $c/\text{\AA}$    | 20.1781(5)             |
|                   | 153                    |

| $\alpha^{\prime \circ}$                     | 90                                                            |
|---------------------------------------------|---------------------------------------------------------------|
| $\beta^{\prime\circ}$                       | 90.337(2)                                                     |
| $\gamma^{\prime \circ}$                     | 90                                                            |
| <i>Volume</i> /Å <sup>3</sup>               | 3770.54(19)                                                   |
| Ζ                                           | 4                                                             |
| <i>Dcalc</i> g/cm <sup>3</sup>              | 1.245                                                         |
| $\mu/\text{mm}^{-1}$                        | 0.105                                                         |
| <i>F</i> (000)                              | 1496.0                                                        |
| Crystal size/mm <sup>3</sup>                | $0.305 \times 0.19 \times 0.109$                              |
| Radiation                                   | Mo Ka ( $\lambda = 0.71073$ )                                 |
| $2\theta$ range for data collection/°       | 4.038 to 54.968                                               |
| Index ranges                                | $-11 \le h \le 11, -26 \le k \le 23, -26 \le l \le 25$        |
| Reflections collected                       | 44667                                                         |
| Independent reflections                     | 8637 [ $R_{\text{int}} = 0.0329, R_{\text{sigma}} = 0.0259$ ] |
| Data/restraints/parameters                  | 8637/0/484                                                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.051                                                         |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0389, wR_2 = 0.0998$                                 |
| Final R indexes [all data]                  | $R_1 = 0.0470, wR_2 = 0.1042$                                 |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.36/-0.35                                                    |

**Table S.32.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **219**. U<sub>eq</sub> is defined as 1/3 of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | x          | у         | Ζ         | U(eq)    |
|------|------------|-----------|-----------|----------|
| Sil  | 3302.1(3)  | 6608.3(2) | 4351.2(2) | 13.65(8) |
| 01   | 6425.3(12) | 9918.6(5) | 2082.7(5) | 32.3(2)  |
| O2   | 7101.2(11) | 9552.2(5) | 6931.9(5) | 25.3(2)  |
| N1   | -473.9(13) | 7942.2(6) | 2263.8(6) | 25.2(3)  |
| N2   | -399.6(14) | 7621.3(6) | 6615.2(6) | 27.4(3)  |
| C1   | 2249.2(13) | 7004.4(6) | 3668.2(6) | 14.8(2)  |
| C2   | 1543.4(13) | 6655.6(6) | 3162.4(6) | 17.5(2)  |
| C3   | 683.3(14)  | 6959.4(6) | 2689.5(6) | 19.6(3)  |
| C4   | 436.8(13)  | 7641.2(6) | 2714.9(6) | 17.5(2)  |
| C5   | -829.5(19) | 7594.0(8) | 1663.2(7) | 35.5(4)  |
| C6   | -793.8(19) | 8630.9(8) | 2317.0(8) | 35.9(4)  |
| C7   | 1158.8(13) | 8002.0(6) | 3214.1(6) | 15.8(2)  |
| C8   | 2063.6(12) | 7692.9(6) | 3673.2(6) | 14.0(2)  |
| C9   | 2979.3(12) | 8112.7(6) | 4114.1(6) | 13.8(2)  |
| C10  | 3027.3(12) | 8072.8(6) | 4813.2(6) | 13.5(2)  |
|      |            |           |           |          |

| Atom | x          | У           | Z          | U(eq)   |
|------|------------|-------------|------------|---------|
| C11  | 2159.8(12) | 7590.3(6)   | 5206.6(6)  | 14.0(2) |
| C12  | 1252.8(13) | 7822.7(6)   | 5701.4(6)  | 15.8(2) |
| C13  | 539.3(13)  | 7390.2(6)   | 6137.8(6)  | 18.1(2) |
| C14  | -675(2)    | 8307.8(8)   | 6677.6(9)  | 37.8(4) |
| C15  | -823.8(17) | 7190.6(7)   | 7148.5(7)  | 30.0(3) |
| C16  | 817.7(14)  | 6714.6(6)   | 6071.3(6)  | 18.8(3) |
| C17  | 1691.4(13) | 6487.8(6)   | 5563.1(6)  | 17.2(2) |
| C18  | 2370.9(13) | 6908.6(6)   | 5111.3(6)  | 14.7(2) |
| C19  | 3090.3(14) | 5695.3(6)   | 4282.6(6)  | 17.6(2) |
| C20  | 1695.0(15) | 5416.4(7)   | 4266.8(7)  | 24.4(3) |
| C21  | 1497.6(18) | 4743.8(7)   | 4200.6(8)  | 32.3(3) |
| C22  | 2689.6(19) | 4333.3(7)   | 4150.8(8)  | 34.8(4) |
| C23  | 4077.7(18) | 4594.3(7)   | 4169.8(7)  | 31.2(3) |
| C24  | 4274.4(15) | 5271.0(7)   | 4235.9(6)  | 21.8(3) |
| C25  | 5250.8(13) | 6862.2(6)   | 4312.3(6)  | 18.4(2) |
| C26  | 5926.8(16) | 6942.4(8)   | 3698.1(8)  | 29.0(3) |
| C27  | 7349.7(17) | 7156.2(9)   | 3649.4(9)  | 39.6(4) |
| C28  | 8137.8(17) | 7291.0(9)   | 4219.2(10) | 43.6(4) |
| C29  | 7493.2(18) | 7224.1(9)   | 4832.9(10) | 42.8(4) |
| C30  | 6059.4(15) | 7013.6(8)   | 4877.4(8)  | 29.0(3) |
| C31  | 3899.1(13) | 8555.3(6)   | 3804.3(6)  | 15.1(2) |
| C32  | 4911.4(13) | 8945.4(6)   | 4143.2(6)  | 15.2(2) |
| C33  | 5889.1(13) | 9387.8(6)   | 3784.3(6)  | 17.1(2) |
| C34  | 5786.2(14) | 9459.1(6)   | 3096.4(7)  | 20.8(3) |
| C35  | 6644.0(15) | 9899.2(7)   | 2754.5(7)  | 24.0(3) |
| C36  | 7149(2)    | 10423.0(10) | 1724.4(8)  | 43.1(4) |
| C37  | 7646.1(15) | 10283.4(7)  | 3102.2(7)  | 27.6(3) |
| C38  | 7777.6(15) | 10207.5(7)  | 3780.2(7)  | 24.8(3) |
| C39  | 6919.6(13) | 9763.8(6)   | 4142.1(7)  | 19.0(3) |
| C40  | 7028.5(13) | 9700.1(6)   | 4863.3(6)  | 18.2(2) |
| C41  | 8067.3(14) | 10049.9(6)  | 5235.4(7)  | 22.2(3) |
| C42  | 8144.5(14) | 10013.9(6)  | 5918.1(7)  | 23.1(3) |
| C43  | 7152.4(14) | 9620.0(6)   | 6255.1(7)  | 20.8(3) |
| C44  | 8008.1(17) | 9972.6(7)   | 7317.5(8)  | 30.7(3) |
| C45  | 6131.1(14) | 9260.3(6)   | 5904.1(6)  | 19.3(3) |
| C46  | 6048.8(13) | 9289.5(6)   | 5210.5(6)  | 16.7(2) |
| C47  | 4967.2(13) | 8905.7(6)   | 4838.8(6)  | 15.0(2) |
| C48  | 3987.9(13) | 8479.4(6)   | 5154.8(6)  | 15.0(2) |

| Atom | U <sub>11</sub> | U <sub>22</sub> | U33       | U <sub>23</sub> | U <sub>13</sub> | $U_{12}$  |
|------|-----------------|-----------------|-----------|-----------------|-----------------|-----------|
| Si1  | 12.79(16)       | 12.87(16)       | 15.30(16) | -0.46(12)       | 1.57(11)        | -1.09(11) |
| O1   | 36.0(6)         | 35.9(6)         | 25.2(5)   | 10.4(4)         | 6.7(4)          | -11.5(5)  |
| O2   | 29.7(5)         | 21.9(5)         | 24.3(5)   | -2.8(4)         | -10.2(4)        | -5.1(4)   |
| N1   | 29.0(6)         | 25.9(6)         | 20.5(5)   | -2.5(5)         | -9.1(5)         | 3.9(5)    |
| N2   | 34.9(7)         | 22.7(6)         | 24.9(6)   | 4.3(5)          | 16.8(5)         | 4.7(5)    |
| C1   | 13.6(6)         | 16.2(6)         | 14.6(5)   | -0.6(4)         | 3.0(4)          | -1.4(4)   |
| C2   | 18.1(6)         | 15.7(6)         | 18.8(6)   | -2.8(5)         | 3.2(5)          | -1.1(5)   |
| C3   | 20.1(6)         | 22.2(6)         | 16.6(6)   | -4.8(5)         | -0.4(5)         | -3.8(5)   |
| C4   | 15.2(6)         | 23.4(6)         | 14.0(5)   | 0.5(5)          | 0.3(4)          | -0.8(5)   |
| C5   | 42.7(9)         | 39.9(9)         | 23.8(7)   | -2.8(6)         | -16.2(6)        | 5.9(7)    |
| C6   | 45.1(9)         | 26.7(8)         | 35.6(8)   | 1.5(6)          | -21.2(7)        | 5.1(7)    |
| C7   | 16.2(6)         | 15.7(6)         | 15.4(5)   | -0.3(4)         | 2.6(4)          | -1.1(4)   |
| C8   | 13.1(5)         | 16.8(6)         | 12.3(5)   | -0.6(4)         | 3.2(4)          | -2.1(4)   |
| C9   | 12.7(5)         | 13.2(5)         | 15.5(5)   | -1.0(4)         | 0.7(4)          | 0.4(4)    |
| C10  | 13.2(5)         | 11.9(5)         | 15.4(5)   | 0.2(4)          | 1.7(4)          | 0.3(4)    |
| C11  | 12.7(5)         | 16.6(6)         | 12.8(5)   | 0.6(4)          | -1.7(4)         | -2.9(4)   |
| C12  | 17.0(6)         | 14.6(6)         | 15.8(6)   | 0.1(4)          | 0.7(4)          | 0.0(4)    |
| C13  | 16.7(6)         | 21.5(6)         | 16.2(6)   | -0.1(5)         | 3.1(4)          | -0.7(5)   |
| C14  | 47.8(10)        | 24.5(8)         | 41.5(9)   | -0.1(7)         | 27.8(8)         | 5.3(7)    |
| C15  | 37.0(8)         | 28.1(7)         | 25.2(7)   | 0.9(6)          | 16.9(6)         | -3.3(6)   |
| C16  | 20.1(6)         | 18.9(6)         | 17.4(6)   | 3.0(5)          | 3.9(5)          | -4.4(5)   |
| C17  | 17.3(6)         | 14.9(6)         | 19.6(6)   | 0.1(5)          | 0.8(5)          | -3.0(4)   |
| C18  | 13.3(5)         | 16.2(6)         | 14.5(5)   | -0.3(4)         | -1.0(4)         | -1.7(4)   |
| C19  | 21.6(6)         | 15.7(6)         | 15.5(6)   | -0.6(5)         | 0.8(5)          | -0.9(5)   |
| C20  | 24.7(7)         | 19.3(6)         | 29.2(7)   | -1.4(5)         | 1.2(5)          | -3.6(5)   |
| C21  | 36.0(8)         | 21.8(7)         | 39.0(8)   | 0.5(6)          | -5.9(6)         | -10.4(6)  |
| C22  | 51.2(10)        | 14.2(7)         | 38.8(8)   | -1.5(6)         | -13.0(7)        | -2.9(6)   |
| C23  | 40.5(9)         | 20.1(7)         | 33.0(8)   | -4.7(6)         | -10.0(6)        | 9.6(6)    |
| C24  | 25.9(7)         | 20.0(6)         | 19.5(6)   | -1.6(5)         | -3.0(5)         | 2.3(5)    |
| C25  | 14.2(6)         | 14.3(6)         | 26.8(7)   | 2.5(5)          | 3.0(5)          | 1.5(4)    |
| C26  | 22.7(7)         | 32.4(8)         | 31.9(8)   | -1.6(6)         | 8.9(6)          | -0.9(6)   |
| C27  | 24.8(8)         | 42.1(9)         | 52.1(10)  | 5.6(8)          | 17.9(7)         | -1.5(7)   |
| C28  | 15.2(7)         | 41.3(10)        | 74.4(13)  | 13.9(9)         | 6.2(7)          | -5.0(6)   |
| C29  | 23.5(8)         | 48.8(10)        | 56.0(11)  | 11.6(8)         | -14.6(7)        | -11.0(7)  |
| C30  | 20.4(7)         | 34.4(8)         | 32.0(8)   | 8.2(6)          | -4.3(5)         | -4.5(6)   |

**Table S.33.** Anisotropic Displacement Parameters (×10<sup>4</sup>) for **219**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C31  | 15.6(6)         | 14.3(6)         | 15.3(5)         | -0.2(4)         | 2.3(4)          | 0.2(4)          |
| C32  | 13.4(6)         | 12.4(5)         | 19.8(6)         | 0.5(5)          | 2.4(4)          | 0.4(4)          |
| C33  | 14.2(6)         | 13.4(6)         | 23.9(6)         | 1.0(5)          | 4.0(5)          | 0.3(4)          |
| C34  | 18.7(6)         | 18.6(6)         | 25.1(6)         | 1.3(5)          | 3.3(5)          | -3.3(5)         |
| C35  | 23.0(7)         | 22.7(7)         | 26.4(7)         | 4.9(5)          | 6.5(5)          | -0.5(5)         |
| C36  | 43.2(10)        | 51.3(11)        | 34.8(9)         | 20.1(8)         | 5.9(7)          | -17.1(8)        |
| C37  | 23.0(7)         | 24.5(7)         | 35.3(8)         | 6.4(6)          | 8.3(6)          | -7.6(5)         |
| C38  | 18.5(6)         | 21.3(7)         | 34.7(7)         | 1.5(6)          | 2.2(5)          | -6.4(5)         |
| C39  | 14.0(6)         | 15.1(6)         | 28.0(7)         | 0.2(5)          | 3.3(5)          | -0.5(4)         |
| C40  | 13.7(6)         | 13.8(6)         | 27.2(6)         | -1.3(5)         | -0.5(5)         | 0.5(4)          |
| C41  | 15.4(6)         | 16.5(6)         | 34.6(7)         | -1.2(5)         | -0.6(5)         | -2.5(5)         |
| C42  | 17.7(6)         | 17.2(6)         | 34.3(7)         | -4.2(5)         | -8.1(5)         | -0.8(5)         |
| C43  | 20.5(6)         | 16.6(6)         | 25.3(6)         | -2.6(5)         | -6.3(5)         | 2.7(5)          |
| C44  | 36.3(8)         | 25.1(7)         | 30.5(7)         | -4.2(6)         | -14.0(6)        | -7.1(6)         |
| C45  | 18.1(6)         | 15.7(6)         | 24.1(6)         | -0.8(5)         | -2.9(5)         | -1.3(5)         |
| C46  | 13.9(6)         | 12.2(6)         | 24.1(6)         | -1.7(5)         | -1.8(5)         | 0.8(4)          |
| C47  | 13.5(5)         | 11.9(6)         | 19.5(6)         | -0.7(4)         | -0.4(4)         | -0.2(4)         |
| C48  | 16.2(6)         | 13.8(6)         | 15.0(5)         | -0.7(4)         | -0.3(4)         | 0               |

# Table S.34. Bond Lengths in Å for 219.

| Atom Atom Length/Å |     |            | Atom Atom Length/Å |     |            |  |
|--------------------|-----|------------|--------------------|-----|------------|--|
| Si1                | C1  | 1.8625(12) | C19                | C20 | 1.4024(18) |  |
| Si1                | C18 | 1.8637(12) | C19                | C24 | 1.3924(18) |  |
| Si1                | C19 | 1.8711(13) | C20                | C21 | 1.386(2)   |  |
| Si1                | C25 | 1.8662(13) | C21                | C22 | 1.381(2)   |  |
| 01                 | C35 | 1.3698(17) | C22                | C23 | 1.382(2)   |  |
| 01                 | C36 | 1.4222(17) | C23                | C24 | 1.394(2)   |  |
| O2                 | C43 | 1.3736(16) | C25                | C26 | 1.3992(19) |  |
| O2                 | C44 | 1.4224(16) | C25                | C30 | 1.3918(19) |  |
| N1                 | C4  | 1.3764(16) | C26                | C27 | 1.382(2)   |  |
| N1                 | C5  | 1.4394(18) | C27                | C28 | 1.383(3)   |  |
| N1                 | C6  | 1.4349(19) | C28                | C29 | 1.383(3)   |  |
| N2                 | C13 | 1.3797(16) | C29                | C30 | 1.389(2)   |  |
| N2                 | C14 | 1.4241(19) | C31                | C32 | 1.3983(17) |  |
| N2                 | C15 | 1.4428(17) | C32                | C33 | 1.4659(16) |  |
| C1                 | C2  | 1.3990(17) | C32                | C47 | 1.4064(17) |  |
| C1                 | C8  | 1.4100(17) | C33                | C34 | 1.3982(18) |  |
| C2                 | C3  | 1.3813(18) | C33                | C39 | 1.4124(18) |  |

| Atom | Atom | Length/Å   | Atom Atom Length/Å |     |            |  |
|------|------|------------|--------------------|-----|------------|--|
| C3   | C4   | 1.4056(18) | C34                | C35 | 1.3801(18) |  |
| C4   | C7   | 1.4090(17) | C35                | C37 | 1.394(2)   |  |
| C7   | C8   | 1.3913(17) | C37                | C38 | 1.381(2)   |  |
| C8   | C9   | 1.4900(16) | C38                | C39 | 1.4054(18) |  |
| C9   | C10  | 1.4133(16) | C39                | C40 | 1.4639(18) |  |
| C9   | C31  | 1.3861(16) | C40                | C41 | 1.4045(18) |  |
| C10  | C11  | 1.4952(16) | C40                | C46 | 1.4164(17) |  |
| C10  | C48  | 1.3895(16) | C41                | C42 | 1.381(2)   |  |
| C11  | C12  | 1.3874(17) | C42                | C43 | 1.394(2)   |  |
| C11  | C18  | 1.4126(17) | C43                | C45 | 1.3821(17) |  |
| C12  | C13  | 1.4092(17) | C45                | C46 | 1.4023(18) |  |
| C13  | C16  | 1.4036(18) | C46                | C47 | 1.4667(16) |  |
| C16  | C17  | 1.3852(17) | C47                | C48 | 1.4053(16) |  |
| C17  | C18  | 1.3999(17) |                    |     |            |  |

# Table S.35. Bond Angles in $^\circ$ for 219.

| Atom Atom Atom Angle/° |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Atom Atom Atom Angle/°                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Si1                    | C18                                                                                                                                            | 103.19(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C24                                                                                                                                                                                                                                                                                                                                                                              | C19                                                                                                                                                                                                                                                                                                                                                                                                                      | C20                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117.59(12)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Si1                    | C19                                                                                                                                            | 108.71(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C21                                                                                                                                                                                                                                                                                                                                                                              | C20                                                                                                                                                                                                                                                                                                                                                                                                                      | C19                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.35(13)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Si1                    | C25                                                                                                                                            | 110.12(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C22                                                                                                                                                                                                                                                                                                                                                                              | C21                                                                                                                                                                                                                                                                                                                                                                                                                      | C20                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.98(14)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Si1                    | C19                                                                                                                                            | 109.74(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C21                                                                                                                                                                                                                                                                                                                                                                              | C22                                                                                                                                                                                                                                                                                                                                                                                                                      | C23                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.91(14)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Si1                    | C25                                                                                                                                            | 112.93(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C22                                                                                                                                                                                                                                                                                                                                                                              | C23                                                                                                                                                                                                                                                                                                                                                                                                                      | C24                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.04(14)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Si1                    | C19                                                                                                                                            | 111.76(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C19                                                                                                                                                                                                                                                                                                                                                                              | C24                                                                                                                                                                                                                                                                                                                                                                                                                      | C23                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.13(13)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 01                     | C36                                                                                                                                            | 117.22(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C26                                                                                                                                                                                                                                                                                                                                                                              | C25                                                                                                                                                                                                                                                                                                                                                                                                                      | Si1                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.06(11)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 02                     | C44                                                                                                                                            | 117.39(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C30                                                                                                                                                                                                                                                                                                                                                                              | C25                                                                                                                                                                                                                                                                                                                                                                                                                      | Si1                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122.33(10)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N1                     | C5                                                                                                                                             | 118.20(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C30                                                                                                                                                                                                                                                                                                                                                                              | C25                                                                                                                                                                                                                                                                                                                                                                                                                      | C26                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117.52(13)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N1                     | C6                                                                                                                                             | 120.56(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C27                                                                                                                                                                                                                                                                                                                                                                              | C26                                                                                                                                                                                                                                                                                                                                                                                                                      | C25                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.67(15)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N1                     | C5                                                                                                                                             | 119.81(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C26                                                                                                                                                                                                                                                                                                                                                                              | C27                                                                                                                                                                                                                                                                                                                                                                                                                      | C28                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.64(15)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N2                     | C14                                                                                                                                            | 120.53(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C29                                                                                                                                                                                                                                                                                                                                                                              | C28                                                                                                                                                                                                                                                                                                                                                                                                                      | C27                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.00(14)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N2                     | C15                                                                                                                                            | 119.14(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C28                                                                                                                                                                                                                                                                                                                                                                              | C29                                                                                                                                                                                                                                                                                                                                                                                                                      | C30                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.99(16)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N2                     | C15                                                                                                                                            | 118.67(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C29                                                                                                                                                                                                                                                                                                                                                                              | C30                                                                                                                                                                                                                                                                                                                                                                                                                      | C25                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.17(15)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C1                     | Sil                                                                                                                                            | 123.87(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C9                                                                                                                                                                                                                                                                                                                                                                               | C31                                                                                                                                                                                                                                                                                                                                                                                                                      | C32                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123.61(11)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C1                     | C8                                                                                                                                             | 116.91(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C31                                                                                                                                                                                                                                                                                                                                                                              | C32                                                                                                                                                                                                                                                                                                                                                                                                                      | C33                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.97(11)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C1                     | Sil                                                                                                                                            | 119.10(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C31                                                                                                                                                                                                                                                                                                                                                                              | C32                                                                                                                                                                                                                                                                                                                                                                                                                      | C47                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.41(11)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C2                     | C1                                                                                                                                             | 122.58(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C47                                                                                                                                                                                                                                                                                                                                                                              | C32                                                                                                                                                                                                                                                                                                                                                                                                                      | C33                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.63(11)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C3                     | C4                                                                                                                                             | 120.49(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C34                                                                                                                                                                                                                                                                                                                                                                              | C33                                                                                                                                                                                                                                                                                                                                                                                                                      | C32                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.06(11)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C4                     | C3                                                                                                                                             | 120.78(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C34                                                                                                                                                                                                                                                                                                                                                                              | C33                                                                                                                                                                                                                                                                                                                                                                                                                      | C39                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.51(11)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C4                     | C7                                                                                                                                             | 121.56(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C39                                                                                                                                                                                                                                                                                                                                                                              | C33                                                                                                                                                                                                                                                                                                                                                                                                                      | C32                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.39(11)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | Atom<br>Si1<br>Si1<br>Si1<br>Si1<br>Si1<br>Si1<br>O1<br>O2<br>N1<br>N1<br>N1<br>N2<br>N2<br>N2<br>C1<br>C1<br>C1<br>C1<br>C2<br>C3<br>C4<br>C4 | Atom Atom         Si1       C18         Si1       C19         Si1       C25         Si1       C19         Si1       C25         Si1       C19         Si1       C25         Si1       C19         O1       C36         O2       C44         N1       C5         N1       C6         N1       C5         N2       C14         N2       C15         C1       Si1         C1       C8         C1       Si1         C2       C1         C3       C4         C4       C3         C4       C7 | Atom Atom Angle/°Si1C18 $103.19(5)$ Si1C19 $108.71(6)$ Si1C25 $110.12(6)$ Si1C19 $109.74(5)$ Si1C25 $112.93(6)$ Si1C19 $111.76(6)$ O1C36 $117.22(12)$ O2C44 $117.39(11)$ N1C5 $118.20(12)$ N1C6 $120.56(11)$ N1C5 $119.81(12)$ N2C14 $120.53(11)$ N2C15 $118.67(12)$ C1Si1 $123.87(9)$ C1C8 $116.91(11)$ C1Si1 $119.10(9)$ C2C1 $122.58(12)$ C3C4 $120.78(11)$ C4C7 $121.56(12)$ | Atom Atom Angle/°AtomSi1C18 $103.19(5)$ C24Si1C19 $108.71(6)$ C21Si1C25 $110.12(6)$ C22Si1C19 $109.74(5)$ C21Si1C25 $112.93(6)$ C22Si1C19 $111.76(6)$ C19O1C36 $117.22(12)$ C26O2C44 $117.39(11)$ C30N1C5 $118.20(12)$ C30N1C5 $119.81(12)$ C26N2C14 $120.53(11)$ C27N1C5 $119.14(12)$ C28N2C15 $116.91(11)$ C31C1Si1 $123.87(9)$ C9C1C8 $116.91(11)$ C31C2C1 $122.58(12)$ C47C3C4 $120.78(11)$ C34C4C7 $121.56(12)$ C39 | Atom Atom Angle/°Atom Atom AtomSi1C18 $103.19(5)$ C24C19Si1C19 $108.71(6)$ C21C20Si1C25 $110.12(6)$ C22C21Si1C19 $109.74(5)$ C21C22Si1C25 $112.93(6)$ C22C23Si1C19 $111.76(6)$ C19C24O1C36 $117.22(12)$ C26C25O2C44 $117.39(11)$ C30C25N1C5 $118.20(12)$ C30C25N1C5 $119.81(12)$ C26C27N2C14 $120.53(11)$ C29C28N2C15 $119.14(12)$ C28C29N2C15 $116.91(11)$ C31C32C1Si1 $122.58(12)$ C47C32C3C4 $120.49(11)$ C34C33C4C7 $121.56(12)$ C39C33 | Atom Atom Angle/°Atom Atom Atom AtomSi1C18103.19(5)C24C19C20Si1C19108.71(6)C21C20C19Si1C25110.12(6)C22C21C20Si1C19109.74(5)C21C22C23Si1C25112.93(6)C22C23C24Si1C19111.76(6)C19C24C23O1C36117.22(12)C26C25Si1O2C44117.39(11)C30C25C26N1C5118.20(12)C30C25C26N1C6120.56(11)C27C26C27N2C14120.53(11)C29C28C27N2C15119.14(12)C28C29C30N2C15116.91(11)C31C32C33C1Si1119.10(9)C31C32C33C3C4120.49(11)C34C33C32C4C3120.78(11)C34C33C39C4C7121.56(12)C39C33C32 |

| Atom Atom Atom Angle/° |     | Atom Atom Atom Angle/° |            |     |     |     |            |
|------------------------|-----|------------------------|------------|-----|-----|-----|------------|
| C3                     | C4  | C7                     | 117.65(11) | C35 | C34 | C33 | 121.86(12) |
| C8                     | C7  | C4                     | 121.20(11) | 01  | C35 | C34 | 115.62(12) |
| C1                     | C8  | C9                     | 120.32(10) | 01  | C35 | C37 | 125.08(12) |
| C7                     | C8  | C1                     | 121.04(11) | C34 | C35 | C37 | 119.31(13) |
| C7                     | C8  | C9                     | 118.18(11) | C38 | C37 | C35 | 119.31(12) |
| C10                    | C9  | C8                     | 125.27(10) | C37 | C38 | C39 | 122.69(13) |
| C31                    | C9  | C8                     | 116.51(10) | C33 | C39 | C40 | 120.13(11) |
| C31                    | C9  | C10                    | 118.15(11) | C38 | C39 | C33 | 117.29(12) |
| C9                     | C10 | C11                    | 123.63(10) | C38 | C39 | C40 | 122.55(12) |
| C48                    | C10 | C9                     | 118.49(11) | C41 | C40 | C39 | 121.93(12) |
| C48                    | C10 | C11                    | 117.79(10) | C41 | C40 | C46 | 117.79(12) |
| C12                    | C11 | C10                    | 118.90(11) | C46 | C40 | C39 | 120.26(11) |
| C12                    | C11 | C18                    | 121.04(11) | C42 | C41 | C40 | 122.50(12) |
| C18                    | C11 | C10                    | 119.81(10) | C41 | C42 | C43 | 119.16(12) |
| C11                    | C12 | C13                    | 121.40(11) | 02  | C43 | C42 | 124.69(12) |
| N2                     | C13 | C12                    | 121.27(12) | 02  | C43 | C45 | 115.42(12) |
| N2                     | C13 | C16                    | 121.01(11) | C45 | C43 | C42 | 119.89(12) |
| C16                    | C13 | C12                    | 117.72(11) | C43 | C45 | C46 | 121.44(12) |
| C17                    | C16 | C13                    | 120.21(11) | C40 | C46 | C47 | 119.44(11) |
| C16                    | C17 | C18                    | 122.79(12) | C45 | C46 | C40 | 119.20(11) |
| C11                    | C18 | Sil                    | 119.84(9)  | C45 | C46 | C47 | 121.35(11) |
| C17                    | C18 | Sil                    | 122.99(9)  | C32 | C47 | C46 | 120.03(11) |
| C17                    | C18 | C11                    | 116.66(11) | C48 | C47 | C32 | 117.94(11) |
| C20                    | C19 | Sil                    | 119.83(10) | C48 | C47 | C46 | 122.01(11) |
| C24                    | C19 | Sil                    | 122.57(10) | C10 | C48 | C47 | 123.27(11) |

**Table S.36.** Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **219**. U<sub>eq</sub> is defined as 1/3 of the trace of the orthogonalised U<sub>ij</sub>.

| Atom | x        | У       | z       | U(eq) |
|------|----------|---------|---------|-------|
| H2   | 1660.25  | 6191.7  | 3143.48 | 21    |
| H3   | 255.24   | 6705.51 | 2344.53 | 24    |
| H5A  | 66.87    | 7438.92 | 1454.12 | 53    |
| H5B  | -1346.62 | 7889.46 | 1358.8  | 53    |
| H5C  | -1450.88 | 7216.76 | 1767.7  | 53    |
| H6A  | -1096.61 | 8731.71 | 2770.65 | 54    |
| H6B  | -1580.09 | 8744.67 | 2007.56 | 54    |
| H6C  | 76.79    | 8886.76 | 2209.09 | 54    |

| Atom | x        | У        | Z       | U(eq) |
|------|----------|----------|---------|-------|
| H7   | 1025.36  | 8464.83  | 3237.67 | 19    |
| H12  | 1109.78  | 8283.29  | 5746.92 | 19    |
| H14A | 201.37   | 8528.97  | 6843.32 | 57    |
| H14B | -1475.15 | 8377.66  | 6988.87 | 57    |
| H14C | -942.36  | 8489.11  | 6243.64 | 57    |
| H15A | -1387.88 | 6821.66  | 6968.83 | 45    |
| H15B | -1419.43 | 7435.16  | 7465.49 | 45    |
| H15C | 47.77    | 7022.25  | 7373.27 | 45    |
| H16  | 405.64   | 6411.84  | 6375.83 | 23    |
| H17  | 1835.47  | 6027.17  | 5519.21 | 21    |
| H20  | 868.21   | 5694.37  | 4302.1  | 29    |
| H21  | 542.84   | 4565.09  | 4189.55 | 39    |
| H22  | 2555.35  | 3872.32  | 4103.53 | 42    |
| H23  | 4898.33  | 4312.2   | 4137.69 | 37    |
| H24  | 5232.62  | 5445.76  | 4249.42 | 26    |
| H26  | 5394.5   | 6847.41  | 3304.64 | 35    |
| H27  | 7783.75  | 7210.34  | 3226.77 | 48    |
| H28  | 9122.26  | 7429.53  | 4188.99 | 52    |
| H29  | 8030.73  | 7322.2   | 5224.15 | 51    |
| H30  | 5622.98  | 6972.24  | 5300.94 | 35    |
| H31  | 3838.31  | 8595.77  | 3335.93 | 18    |
| H34  | 5106.68  | 9197.06  | 2857.58 | 25    |
| H36A | 6877.59  | 10395.76 | 1254.85 | 65    |
| H36B | 8203.89  | 10367.56 | 1771.42 | 65    |
| H36C | 6865.13  | 10853.41 | 1900.1  | 65    |
| H37  | 8232.58  | 10594.21 | 2875.29 | 33    |
| H38  | 8476.57  | 10465.72 | 4011.4  | 30    |
| H41  | 8742.45  | 10321.51 | 5008.81 | 27    |
| H42  | 8864.68  | 10254.63 | 6155.03 | 28    |
| H44A | 7795.25  | 10432.27 | 7207.35 | 46    |
| H44B | 9030.69  | 9877.71  | 7221.44 | 46    |
| H44C | 7823.29  | 9897.46  | 7789.26 | 46    |
| H45  | 5470.38  | 8987.26  | 6137.72 | 23    |
| H48  | 3982.3   | 8468.65  | 5625.51 | 18    |

#### References

- [1] (a) Denmark, S. E.; Neuville, L. Org. Lett., 2000, 2, 3221–3224; (b) Denmark, S. E.; Wehrli, D. Org. Lett., 2000, 2, 565–568.
- [2] (a) Murata, M.; Ishikura, M.; Nagata, M.; Watanabe, S.; Masuda, Y. Org. Lett., 2002, 4, 1843–1845; (b) Manoso, A. S.; DeShong, P. J. Org. Chem., 2001, 66, 7449–7455; (c) Denmark, S. E.; Smith, R. C.; Chang, W. -T. T.; Muhuhi, J. M. J. Am. Chem. Soc., 2009, 131, 3104–3118; (d) Denmark, S. E.; Kallemeyn, J. M. J. Am. Chem. Soc., 2006, 128, 15958–15959.
- [3] Gustavson, W. A.; Epstein, P. S.; Curtis, M. D. Organometallics, 1982, 1, 884-885.
- [4] Cheng, C.; Hartwig, J. F. Chem. Rev., 2015, 115, 8946-8975.
- [5] (a) Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am. Chem. Soc., 2010, 132, 14324–14326; (b) Kuninobu, Y.; Yamauchi, K.; Tanura, N.; Seiki, T.; Takai, K. Angew. Chem. Int. Ed., 2013, 52, 1520–1522.
- [6] (a) Zhang, Q. W.; An, K.; Liu, L. C.; Guo, S. X.; Jiang, C. R.; Guo, H. F.; He, W. Angew. Chem. Int. Ed., 2016, 55, 6319–6323; (b) Zhang, Q. W.; An, K.; Liu, L. C.; Zhang, Q.; Guo, H. F.; He, W. Angew. Chem. Int. Ed., 2017, 56, 1125–1129.
- [7] (a) Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc., 2010, 132, 17092–17095; (b) Zhao,
   W. T.; Lu, Z. Q.; Zheng, H. L.; Xue, X. S.; Zhao, D. B. ACS Catal., 2018, 8, 7997–8005.
- [8] Li, Q.; Driess, M.; Hartwig, J. F. Angew. Chem. Int. Ed., 2014, 53, 8471-8474.
- [9] Lin, Y.; Jiang, K. Z.; Cao, J.; Zheng, Z. J.; Xu, Z.; Cui, Y. M.; Xu, L. W. Adv. Synth. Catal., 2017, 359, 2247–2252.
- [10] Murai, M.; Takeuchi, Y.; Takai, K. Chem. Lett., 2017, 46, 1044–1047.
- [11] (a) Williams, N. A.; Uchimaru, Y.; Tanaka, M. J. Chem. Soc. Chem. Commun., 1995, 1129–1130. (b) Choi, G.; Tsurugi, H.; Mashima, K. J. Am. Chem. Soc., 2013, 135, 13149–13161
- [12] (a) Kakiuchi, F.; Matsumoto, M.; Sonoda, M.; Fukuyama, T.; Chatani, N.; Murai, S.; Furukawa, N.; Seki, Y. *Chem. Lett.*, **2000**, *29*, 750–751. (b) Li, W. G.; Chen, W. Q.; Zhou, B.; Xu, Y. K.; Deng, G. B.; Liang, Y.; Yang, Y. *Org. Lett.*, **2019**, *21*, 2718–2722.
- [13] Kakiuchi, F.; Matsumoto, M.; Tsuchiya, K.; Igi, K.; Hayamizu, T.; Chatani, N.; Murai, S. J. Organomet. Chem., 2003, 686, 134–144.
- [14] Wang, H.; Wang, G. H.; Li, P. F. Org. Chem. Front., 2017, 4, 1943–1946.
- [15] Oyamada, J.; Nishiura, M.; Hou, Z. M. Angew. Chem. Int. Ed., 2011, 50, 10720–10723.
- [16] Ihara, H.; Suginome, M. J. Am. Chem. Soc., 2009, 131, 7502-7503.
- [17] Liu, S.; Zhang, S. L.; Lin, Q.; Huang, Y. Q.; Li, B. Org. Lett., 2019, 21, 1134–1138.
- [18] Modak, A.; Patra, T.; Chowdhury, R. Raul, S.; Maiti, D. Organometallics, 2017, 36, 2418– 2423.
- [19] Maji, A.; Guin, S.; Feng, S.; Dahiya, A.; Singh, V. K.; Liu, P.; Maiti, D. Angew. Chem. Int. Ed., 2017, 56, 14903–14907.
- [20] Cheng, C.; Hartwig, J. F. Science, 2014, 343, 853-857.
- [21] (a) Cheng, C.; Hartwig, J. F. J. Am. Chem. Soc., 2015, 137, 592–595; (b) Karmel, C.; Chen,
   Z. W.; Hartwig Z. F. J. Am. Chem. Soc., 2019, 141, 7063–7072.

- [22] (a) Ihara, H.; Ueda, A.; Suginome, M. Chem. Lett., 2011, 40, 916–918; (b) Fang, H. Q.; Hou, W. J.; Liu, G. X.; Huang, Z. J. Am. Chem. Soc., 2017, 139, 11601–11609; (c) Luo, Y.; Teng, H. L.; Xue, C.; Nishiura, M.; Hou, Z. M. ACS Catal., 2018, 8, 8027–8032.
- [23] Cacace, F.; Crestoni, M. E.; Fornarini, S. J. Am. Chem. Soc., 1992, 114, 6776-6784.
- [24] Sollott, G. P.; Peterson, W. R. J. Am. Chem. Soc., 1967, 89, 5054-5056.
- [25] Olah, G. A.; Bach, T.; Prakash, G. K. S. New J. Chem., 1991, 15, 571-574.
- [26] Frick, U.; Simchen, G. Synthesis, 1984, 929–930.
- [27] (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc., 2009, 131, 14192–14193; (b) Furukawa, S.; Kobayashi, J.; Kawashima, T. Dalton Trans., 2010, 39, 9329–9336.
- [28] Massey, A. G.; Park, A. J. J. Organomet. Chem., 1966, 5, 218–225.
- [29] Parks, D. J.; Piers, W. E. J. Am. Chem. Soc., 1996, 118, 9440-9441.
- [30] Curless, L. D.; Ingleson, M. J. Organometallics, 2014, 33, 7241–7246.
- [31] Curless, L. D.; Clark, E. R.; Dunsford, J. J.; Ingleson, M. J. Chem. Commun., 2014, 50, 5270–5272.
- [32] Han, Y. X.; Zhang, S. T.; He, J. G.; Zhang, Y. T. J. Am. Chem. Soc., 2017, 139, 7399-7407.
- [33] Han, Y. X.; Zhang, S. T.; He, J. H.; Zhang. Y. T. ACS Catal., 2018, 8, 8765–8773.
- [34] Ma, Y. H.; Wang, B. L.; Zhang, L.; Hou, Z. M. J. Am. Chem. Soc., 2016, 138, 3663–3666.
- [35] Hesp, K. D.; McDonald, R.; Ferguson, M. J.; Stradiotto, M. J. Am. Chem. Soc., 2008, 130, 16394–16406.
- [36] (a) Klare, H. F. T.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc., 2011, 133, 3312–3315; (b) Königs, C. D. F.; Müller, M. F.; Aiguabella, N.; Klare, H. F. T.; Oestreich, M. Chem. Commun., 2013, 49, 1506–1508.
- [37] Omann, L.; Oestreich, M. Angew. Chem. Int. Ed., 2015, 54, 10276–10279.
- [38] Wübbolt, S.; Oestreich, M. Angew. Chem. Int. Ed., 2015, 54, 15876–15879.
- [39] Yin, Q.; Klare, H. F. T.; Oestreich, M. Angew. Chem. Int. Ed., 2016, 55, 3204–3207.
- [40] Yonekura, K.; Iketani, Y.; Sekine, M.; Tani, T.; Matsui, F.; Kamakura, D.; Tsuchimoto, T. Organometallics, 2017, 36, 3234–3249.
- [41] Chen, Q. A.; Klare, H. F. T.; Oestreich, M. J. Am. Chem. Soc., 2016, 138, 7868-7871.
- [42] Nakatsuka, S.; Gotoh, H.; Kinoshita, K.; Yasuda, N.; Hatakeyama, T. Angew. Chem. Int. Ed., 2017, 56, 5087–5090.
- [43] Kato, K.; Kim, J. O.; Yorimitsu, H.; Kim, D.; Osuka, A. Chem. Asian J., 2016, 11, 1738– 1746.
- [44] Wang, W. B.; Shao, X. F. Org. Biomol. Chem., 2021, 19, 101-122.
- [45] Zhou, D. D.; Gao, Y.; Liu, B. X.; Tan, Q. T.; Xu, B. Org. Lett., 2017, 19, 4628–4631.
- [46] (a) Chan, K.; McKiernan, M. J.; Towns, C. R.; Holmes, A. B. J. Am. Chem. Soc. 2005, 127, 7662–7663; (b) Nakashima, T.; Shimada, M.; Kurihara, Y.; Tsuchiya, M.; Yamanoi, Y.; Nishibori, E.; Sugimoto, K.; Nishihara, H. J. Organomet. Chem., 2016, 805, 27–33.
- [47] Sun, J. W.; Baek, J. Y.; Kim, K. H.; Moon, C. K.; Lee, J. H.; Kwon, S. K.; Kim, Y. H.; Kim, J. J. Chem. Mater., 2015, 27, 6675–6681.

- [48] (a) Xu, S.; Li, H. H.; Chen, R. F.; Chen, Z. C.; Xu, L. J.; Tang, Y. T.; Huang. W. Adv. Optical Mater., 2018, 6, 1701105; (b) Li, H. H; Wang, Y.; Yuan, K.; Tao, Y.; Chen, R. F.; Zheng, C.; Zhou, X. H.; Li, J. F.; Huang, W. Chem. Commun., 2014, 50, 15760–15763.
- [49] (a) Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc., 1955, 77, 6380–6381; (b) Corey, J. Y.;
  Chang, L. S. J. Organomet. Chem., 1986, 307, 7–14; (c) Chan, K. L.; McKiernan, M. J.;
  Towns, C. R.; Holmes, A. B. J. Am. Chem. Soc., 2005, 127, 7662–7663.
- [50] (a) Oita, K.; Gilman, H. J. Am. Chem. Soc., 1957, 79, 339–342; (b) Gilman, H.; Trepka, W. J. J. Org. Chem., 1962, 27, 1418–1422; (c) Belsky, V. K.; Saratov, I. E.; Reikhsfeld, V. O.; Simonenko, A. A. J. Organomet. Chem., 1983, 258, 283–289; (d) Corey, J. Y.; Trankler, K. A.; Braddock-Wilking, J.; Rath, N. P. Organometallics, 2010, 29, 5708–5713; (e) Wittenberg, D.; McNinch, H. A.; Gilman, H. J. Am. Chem. Soc., 1958, 80, 5418–5422; (f) McCarthy, W. Z.; Corey, J. Y.; Corey, E. R. Organometallics, 1984, 3, 255–263; (g) van der Boon, L. J. P.; Hendriks, J. H.; Roolvink, D.; O'Kennedy, S. J.; Lutz, M.; Slootweg, J. C.; Ehlers, A. W.; Lammertsma, K. Eur. J. Inorg. Chem., 2019, 3318–3328.
- [51] Onoe, M.; Morioka, T.; Tobisu, M.; Chatani, N. Chem. Lett., 2013, 42, 238-240.
- [52] (a) Corey, J. Y.; Dueber, M.; Bichlmeir, B. J. Organomet. Chem., 1971, 26, 167–173; (b) Barton, T. J.; Volz, W. E.; Johnson, J. L. J. Org. Chem., 1971, 36, 3365–3367; (c) Cartledge, F. K.; Mollere, P. D. J. Organomet. Chem., 1971, 26, 175–181; (d) Corey, E. R.; Corey, J. Y.; Glick, M. D. J. Organomet. Chem., 1975, 101, 177–186; (e) Corey, E. R.; Corey, J. Y.; Glick, M. D. J. Organomet. Chem., 1977, 129, 17–25; (f) Lange, L. D.; Corey, J. Y.; Rath, N. P. Organometallics, 1991, 10, 3189–3196; (g) Corey, J. Y.; Pitts, A. J.; Winter, R. E. K.; Rath, N. P. J. Organomet. Chem., 1975, 499, 113–121; (h) Shirani, H.; Janosik, T. Organometallics, 2008, 27, 3960–3963; (i) Mercier, L. G.; Furukawa, S.; Piers, W. E.; Wakamiya, A.; Yamaguchi, S.; Parvez, M.; Harrington, R. W.; Clegg, W. Organometallics, 2011, 30, 1719–1729; (j) Matsuda, T.; Sato, S. J. Org. Chem., 2013, 78, 3329–3335; (k) Tsuda, T.; Choi, S. M.; Shintani, R. J. Am. Chem. Soc., 2021, 143, 1641–1650.
- [53] Corey, J. Y.; Corey, E. R. Tetrahedron Lett., 1972, 4669–4672.
- [54] Shibata, T.; Uno, N.; Sasaki, T.; Takano, H.; Sato, T.; Kanyiva, K. S. J. Org. Chem., 2018, 83, 3426–3432.
- [55] (a) Bähr, S.; Oestreich, M. Angew. Chem. Int. Ed., 2017, 56, 52–59; (b) Richter, S. C.;
   Oestreich, M. Trends Chem., 2020, 2, 13–27.
- [56] Rubin, M.; Gevorgyan, V.; Chandrasekhar, S.; Nagendra Babu, B.; Chandrashekar, G.; Shibuya, M. e-*EROS Encyclopaedia of Reagents for Organic Synthesis*, **2019**, *1*, Wiley.
- [57] Laszlo, P.; Teston, M. J. Am. Chem. Soc., 1990, 112, 8750-8754.
- [58] Piers, W. E.; Chivers, T. Chem. Soc. Rev., 1997, 26, 345-354.
- [59] Weicker, S. A.; Stephan, D. W. Bull. Chem. Soc. Jpn., 2015, 88, 1003-1016.
- [60] Larson, J. R.; Melen, R. L. Inorg. Chem., 2017, 56, 8627-8643.
- [61] Zhang, H.; Hagihara, S.; Itami, K. Chem. Eur. J., 2015, 21, 16796–16800.
- [62] (a) Chen, R. F.; Fan, Q. L.; Liu, S. J.; Zhu, R.; Pu, K. Y.; Huang, W. Synth. Met., 2006, 156, 1161–1167; (b) Mouri, K.; Wakamiya, A.; Yamada, H.; Kajiwara, T.; Yamaguchi, S. Org. Lett., 2007, 9, 93–96; (c) Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C. Chem. Mater., 2007, 19, 6459–6470; (d) Wang, E.; Li, C.; Zhuang, W.; Peng, J.; Cao,

Y. J. Mater. Chem., 2008, 18, 797–801; (e) Sanchez, J. C.; Trogler, W. C. J. Mater. Chem.,
2008, 18, 3143–3156; (f) Mo, Y. Q.; Deng, X. Y.; Jiang, X.; Cui, Q. H. J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 3286–3295.

- [63] (a) Beaupre, S.; Boudreault, P. L. T.; Leclerc, M. Adv. Mater., 2010, 22, E6–E27; (b) Corey, J. Y. Adv. Organomet. Chem., 2011, 59, 1–180; (c) Woo, S. J.; Kim, Y.; Kim, Y. H.; Kwon, S. K.; Kim, J. J. J. Mater. Chem. C., 2019, 7, 4191–4198; (d) Liu, X. Y.; Tian, Q. S.; Zhao, D. L.; Ran, Q.; Liao, L. S.; Fan, J. J. Mater. Chem. C., 2018, 6, 8144–8151; (e) Matsuo, K.; Yasuda, T. Chem. Sci., 2019, 10, 10687–10697.
- [64] (a) Usta, H.; Lu, G.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc., 2006, 128, 9034–9035;
  (b) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc., 2008, 130, 7670–7685.
- [65] (a) Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc., 2008, 130, 16144–16145; (b) Zou, Y.; Gendron, D.; Neagu-Plesu, R.; Leclerc, M. Macromolecules, 2009, 42, 6361–6365; (c) Li, G. W.; Kang, C.; Gong, X.; Zhang, J. C.; Li, W. W.; Li, C. H.; Dong, H. L.; Hu, W. P.; Bo, Z. S. J. Mater. Chem. C, 2014, 2, 5116–5123; (d) Erlik, O.; Unlu, N. A.; Hizalan, G.; Hacioglu, S. O.; Comez, S.; Yildiz, E. D.; Toppare, L.; Cirpan, A. Polym. Chem., 2015, 53, 1541–1547. (e) Wang, E. G.; Wang, L.; Lan, L. F.; Luo, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y. Appl. Phys. Lett., 2008, 92, 033307.
- [66] (a) Tobisu, M.; Onoe, M.; Kita, Y.; Chatani, N. J. Am. Chem. Soc., 2009, 131, 7506–7507;
  (b) Liang, Y.; Zhang, S.; Xi, Z. J. Am. Chem. Soc., 2011, 133, 9204–9207; (c) Shimizu, M.; Mochida, K.; Hiyama, T. Angew. Chem. Int. Ed., 2008, 47, 9760–9764.
- [67] (a) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. Org. Lett., 2007, 9, 133–136; (b) Shimizu, M.; Mochida, K.; Hiyama, T. Angew. Chem. Int. Ed., 2008, 47, 9760–9764; (c) Yabusaki, Y.; Ohshima, N.; Kondo, H.; Kusamoto, T.; Yamanoi, Y.; Nishihara, H. Chem. Eur. J., 2010, 16, 5581–5585; (d) Breunig, J. M.; Gupta, P.; Das, A.; Tussupbayev, S.; Diefenbach, M.; Bolte, M.; Wagner, M.; Holthausen, M. C.; Lerner, H. W. Chem. Asian J., 2014, 9, 3163–3173.
- [68] (a) Xu, L.; Zhang, S.; Li, P. F. Org. Chem. Front., 2015, 2, 459–463; (b) Leifert, D.; Studer, A. Org. Lett., 2015, 17, 386–389.
- [69] Omann, L.; Oestreich, M. Organometallics, 2017, 36, 767-776.
- [70] Dong, Y. F.; Takata, Y.; Yoshigoe, Y.; Sekine, K.; Kuninobu, Y. Chem. Commun., 2019, 55, 13303–13306.
- [71] Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcarzar-Roman, L. M. J. Org. Chem., 1999, 64, 5575–5580.
- [72] Hiyama, T.; Oestreich, M. Organosilicon Chemistry: Novel Approaches and Reactions., 2019, 11.
- [73] Cahiez, G.; Chaboche, C.; Mahuteau-Betzer, F.; Ahr, M. Org. Lett., 2005, 7, 1943–1946.
- [74] Wolfe, J. P.; Buchwald, D. L. J. Org. Chem., 2000, 65, 1144–1157.
- [75] Miyaura, N.; Suzuki, A. Chem. Rev., 1995, 95, 2457–2483.
- [76] (a) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J. X.; Yamamoto, Y. J. Org. Chem., 2000, 65, 6179–6186; (b) Fattakhova, D. S.; Jouikov, V. V.; Voronkov, M. G. J. Organomet. Chem., 2000, 613, 170–176.

- [77] Lee, S. H.; Jang, B. B.; Kafafi, Z. H. J. Am. Chem. Soc., 2005, 127, 9071–9078.
- [78] (a) Furakawa, S.; Kobayashi, J.; Kawashima, T. *Dalton Trans.*, 2010, *39*, 9329–9336; (b)
   Li, L.; Xiang, J.; Xu, C. *Org. Lett.*, 2007, *9*, 4877–4879.
- [79] (a) Shin, H. N.; Kim, C. S.; Cho, Y. J.; Kwon, H. J.; Kim, B. O.; Kim, S. M.; Yoon, S. S. WO 2010114243, Dow Advanced Display Materials, Ltd, 2010; (b) Yang, H. CN 105985367, EverDisplay Optronics (Shanghai) Limited, 2016.
- [80] Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Song, J. J.; Lee, H.; Yee, N. K.; Senanayake, C. H. Org. Lett., 2010, 12, 4388–4391.
- [81] Fyfe, J. W. B.; Watson, A. J. B. Chem, 2017, 3, 31–55.
- [82] Hu, J. F.; Sun, H. Q.; Cai, W. S.; Pu, X. H.; Zhang, Y. M.; Shi, Z. Z. J. Org. Chem., 2016, 81, 14–24.
- [83] Yi, Y. Q. Q.; Y, W. C.; Zhai, D. D.; Zhang, X. Y.; Li, S. Q.; Guan, B. T. Chem, Commun., 2016, 52, 10894–10897.
- [84] Reiff, A. L.; Garcia-Frutos, E. M.; Gil, J. M.; Anderson, O. P.; Hegedus, L. S. *Inorg. Chem.*, 2005, 44, 9162–9174.
- [85] (a) Yang, X.; Wang, C. Angew. Chem. Int. Ed., 2018, 57, 923–928; (b) Corey, J. C.; John, C. S.; Ohmsted, M. C.; Chang, L. S. J. Organomet. Chem., 1986, 304, 93–105; (c) Kanno, K.; Hirose, S.; Kyushin, S. Heteroatom Chem., 2018, 29: e21478.
- [86] Hisaki, I.; Nakagawa, S.; Tohnai, N.; Miyata, M. Angew. Chem. Int. Ed., 2015, 54, 3008– 3012.
- [87] Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed., 2004, 43, 3333–3336.
- [88] Zheng, H. X.; Shan, X. H.; Qu, J. P.; Kang, Y. B. Org. Lett., 2017, 19, 5114-5117.
- [89] Bartoli, S.; Cipollone, A.; Squarcia, A.; Madami, A.; Fattori, D. synthesis, 2009, 8, 1305– 1308.
- [90] Shen, H.; Zhang, X.; Liu, Q.; Pan, J.; Hu, W.; Xiong, Y.; Zhu, X. Tetrahedron Lett., 2015, 56, 5628–5631.
- [91] Pastierik, T.; Šebej, P.; Medalová, J.; Štacko, P.; Klán, P. J. Org. Chem., 2014, 79, 3374– 3382.
- [92] Yang, S.; Tang, W.; Yang, Z.; Xu, J. ACS Catal., 2018, 8, 9320–9326.
- [93] Roy, P. P.; D'Souza, K.; Cuperlovic-Culf, M.; Kienesberger, P. C.; Touaibia, M. Eur. J. Med. Chem., 2016, 118, 290–298.
- [94] (a) Li, J.; Ding, D. X.; Wei, Y.; Zhang, J.; Xu, H. Adv. Opt. Mater., 2016, 4, 522–528; (b)
  Liu, X. Y.; Tang, X.; Zhao, Y.; Zhao, D. L.; Fan, J.; Liao, L. S. J. Mater. Chem. C, 2018, 6, 1023–1030.
- [95] (a) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. *Organometallics*, **1995**, *14*, 3081–3089; (b) van der Veen, L. A.; Keeven, P. H.; Schoemaker, G. C.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Lutz, M.; Spek, A. L. *Organometallics*, **2000**, 19, 872–883; (c) Bronger, R. P. J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. *Organometallics*, **2003**, *22*, 5358–5369; (d) Clayden, J.; Fletcher, S. P.; Senior, J.; Worrall, C. P. *Tetrahedron: Asymmetry*, **2010**, *21*, 1355–1360; (e) Rajesh, K.; Dudle, B.; Blacque, O.; Berke, H. *Adv. Synth. Catal.*, **2011**, *353*, 1479–1484.

- [96] (a) Corey, J. Y.; Corey, E. R.; Chang, V. H. T.; Hauser, M. A.; Leiber, M. A.; Reinsel, T. E.; Riva, M. E. Organometallics, 1984, 3, 1051–1060; (b) Nakadaira, Y.; Sato, R.; Sakurai, H. Organometallics, 1991, 10, 435–442; (c) Betson, M. S.; Clayden, J.; Worrall, C. P.; Peace, S. Angew. Chem. Int. Ed., 2006, 45, 5803–5807; (d) Braddock-Wilking, J.; Corey, J. Y.; French, L. M.; Choi, E.; Speedie, V. J.; Rutherford, M. F.; Yao, S.; Xu, H.; Rath, N. P. Organometallics, 2006, 25, 3974–3988.
- [97] Sato, Y.; Takagi, C.; Shintani, R.; Nozaki, K. Angew. Chem. Int. Ed., 2017, 56, 9211-9216.
- [98] Fischer, C.; Sparr, C. Angew. Chem. Int. Ed., 2018, 57, 2436-2440.
- [99] Fang, H. Q.; Oestreich, M. Chem. Sci., 2020, 11, 12604–12615.
- [100] Takuya, U. 2019, US 20190363263, A1.
- [101] Shimizu, N.; Watanabe, S.; Hayakawa, F.; Yasuhara, S.; Tsuno, Y.; Inazu, T. Bull. Chem. Soc. Jpn., 1994, 67, 500–504.
- [102] Bin, X.; Mao-Lin, Li.; Xiao-Dong, Z.; Shou-Fei, Z.; Qi-Lin, Z. J. Am. Chem. Soc., 2015, 137, 8700–8703.
- [103] Wu, X. M.; Hu W. Y. Chin. Chem. Lett., 2012, 23, 391–394.
- [104] (a) Maier, G.; Mihm, G.; Reisenauer, H. P. Angew. Chem. Int. Ed. Engl., 1980, 19, 52–53; (b) Yamaguchi, S.; Endo, T.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Tamao, K. Chem.–Eur. J., 2000, 6, 1683–1692; (c) Boydston, A. J.; Yin, Y.; Pagenkopf, B. L. J. Am. Chem. Soc., 2004, 126, 3724–3725; (d) Zhan, X.; Risko, C.; Amy, F.; Chan, C.; Zhao, W.; Barlow, S.; Kahn, A.; Bredas, J. L.; Marder, S. R. J. Am. Chem. Soc., 2005, 127, 9021–9029; (e) Zhao, Z. J.; He, B. R.; Tang, B. Z. Chem. Sci., 2015, 6, 5347–5365; (f) Dong, Y. F.; Sakai, M.; Fuji, K.; Sekine, K.; Kuninobu, Y. Beilstein J. Org. Chem., 2020, 16, 409–414; (g) Snantra, S. ChemistrySelect, 2020, 5, 9034–9058.
- [105] (a) Barton, T. J.; Kippenha, R. C.; Nelson, A. J. J. Am. Chem. Soc., 1974, 96, 2272–2273;
  (b) Sakamoto, H.; Ishikawa, M. J. Organomet. Chem., 1991, 418, 305–309; (c) Nishinaga, T.; Izukawa, Y.; Komatsu, K. J. Phys. Org. Chem., 1998, 11, 475–477; (d) Kira, M.; Ishida, S.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc., 2002, 124, 3830–3831.
- [106] (a) Shiratori, S.; Yasuike, S.; Kurita, J.; Tsuchiya, T. Chem. Pharm. Bull., 1994, 42, 2441–2448; (b) Ding, B.; Teng, Z.; Keese, R. J. Org. Chem., 2002, 67, 8906–8910; (c) Takamoto, K.; Yoshioka, S.; Fujioka, H.; Arisawa, M. Org. Lett., 2018, 20, 1773–1776; (d) Leigh, W. J.; Li, X. J. Am. Chem. Soc., 2003, 125, 8096–8097.
- [107] Oestreich, M.; Hermeke, J.; Mohr, J. Chem. Soc. Rev., 2015, 44, 2202-2220.
- [108] (a) Hiroto, S. Bull. Chem. Soc. Jpn., 2018, 91, 829–838; (b) Chaolumen, Murata, M.; Sugano, Y.; Wakamiya, A.; Murata, Y. Angew. Chem. Int. Ed., 2015, 54, 9308–9312; (c) Luo, J. Y.; Xu, X. M.; Mao, R. X.; Mao, Q. J. Am. Chem. Soc., 2012, 134, 13796–13803.
- [109] Zhu, C. D.; Wang, D.; Wang, D. Y.; Zhao, Y.; Sun, W. Y.; Shi, Z. Z. Angew. Chem. Int. Ed., 2018, 57, 8848–8853.
- [110] Baumgärtner, K.; Meza Chincha, A. L.; Dreuw, A.; Rominger, F.; Mastalerz, M. Angew. Chem. Int. Ed., 2016, 55, 15594–15598.
- [111] Wadumethrige, S. H.; Rathore, R. Org. Lett., 2008, 10, 5139-5142.
- [112] Hertz, V. M.; Bolte, M.; Lerner, H. W.; Wagner, M. Angew. Chem. Int. Ed., 2015, 54, 8800–8804.

- [113] King, B. T.; Kroulik, J.; Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem., 2007, 72, 2279–2288.
- [114] Wei, B. S.; Zhang, D. C.; Chen, Y. H.; Lei, A. W.; Knochel, P. Angew. Chem. Int. Ed., 2019, 58, 15631–15635.
- [115] SIR2008: Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Crystallogr., 2007, 40, 609–613.
- [116] DIRDIF99: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-99 program system; Technical Report of the Crystallography Laboratory; University of Nijmegen, Nijmegen, The Netherlands, 1999.
- [117] Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974, Vol. 4.
- [118] Olex2 program package: Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst., 2009, 42, 339–341.
- [119] SHELX97: Sheldrick, G. M. Acta Cryst., 2008, A64, 112.

## **Publication List**

Parts of the present thesis have been published in the following journals

- Chapter 2. Dong, Y. F.; Takata, Y.; Yoshigoe, Y.; Sekine, K.; Kuninobu, Y. Lewis Acid-Catalyzed Synthesis of Silafluorene Derivatives from Biphenyls and Dihydrosilanes via a Double Sila-Friedel–Crafts Reaction *Chem. Commun.* 2019, 55, 13303–13306.
- Chapter 3. Dong, Y. F.; Sakai, M.; Fuji, K.; Sekine, K.; Kuninobu, Y. Synthesis of Six-membered Silacycles by Borane-Catalyzed Double Sila-Friedel–Crafts Reaction *Beilstein J. Org. Chem.* 2020, 16, 409–414.
- Chapter 4. Dong, Y. F.; Sekine, K.; Kuninobu, Y.
   Facile Synthesis of Tribenzosilepins from Terphenyls and Dihydrosilanes by Electrophilic Double Silylation *Chem. Commun.* 2021, *57*, 7007–7010.

#### Acknowledgments

This thesis would have been absolutely impossible to achieve without the help and support of many people. Here, I would like to express my sincere thanks to every one of them.

First of all, I would like to thank my advisor Professor Yoichiro Kuninobu for giving me the opportunity to study in his group. For three years, he gave me tremendous support, encouragement and patience. Thank you very much!

I am especially thankful to Assistant Professor Dr. Kohei Sekine, for passing on to me a great deal of his knowledge and experience. All his assistance developing me gradually into a professional chemist, helping me towards my next step after graduated school. Each advice and every discussion are very helpful and is deeply appreciated.

I want to thank Mr. Yuta Takata and Dr. Yusuke Yoshigoe for leaving me with the preliminary results on my first project. I also want to thank Mr. Masahiko Sakai, Mr. Kazuto Fuji for helping me on my second project. Thanks to Toshiaki Mori for helping me on the third project. Thanks to all of my colleagues! Thanks to staffs, Ms. Misa Kojima and Mr. Hiroshi Toshima.

I would like to show my sincerest appreciation to Professor Hiroyuki Furuta and Professor Katsuhiko Tomooka for their kind and patient guidance on this thesis.

Besides, I am indebted to the China Scholarship Council (CSC), Japan Society of the Promotion of Science (JSPS).

At last, I want to thank my mom, my sister, my brother, and my friends for being with me and being there for me.