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Abstract 
 

Due to Jordan’s challenges, its energy sector, from high dependency on importing around 97% of its energy 

resources, expensive fuels as well as a rapid increase in the integration of renewable energy, these challenges call 

for the integration and utilization of smart grid concepts in Jordan's power grid. A smarter grid utilizes the many 

types of data available from smart meters on both transmission level and end-user levels to implement high-

performing machine-learning-based demand predictions as well as demand dynamic demand response systems 

that can enhance the operation and reliability of the power grid. 

 

In this Thesis, a comprehensive demand response model for the residential sector in the Jordanian electricity 

market is introduced, considering the interaction between the power generators (PGs), grid operators (GOs), and 

service providers (SPs). First, an accurate day-ahead hourly short-term load forecasting is conducted, using Deep 

Neural Networks (DNNs) trained on 4-year data collected from the National Electric Power Company (NEPCO) 

in Jordan. The customer behavior is modeled by developing a precise price elasticity matrix of demand (PEMD) 

based on recent research on the short-term price elasticity of Jordan’s residential sector and the analysis of the 

different types of electrical appliances and their daily operational hours according to the latest surveys. First, the 

DNNs are fine-tuned with a detailed feature analysis to predict the day-ahead hourly electrical demand and 

achieved a mean absolute percentage error (MAPE) of 1.365% and 1.411% on the validation and test datasets 

receptively. Then the predictions are used as input to a detailed model of the Jordanian power grid market, where 

a day-ahead peak-time demand response policy for the residential sector is applied to the three distribution power 

companies in Jordan.  Based on different PEMD analyses for the Jordanian residential sector, the results suggest 

a potential reduction range of 4.49% to 8.19% in peak demand accompanied by a cost reduction of USD 64,263 

$ to 265,411 per day for the Jordanian power sector. 
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Chapter 1: Introduction 

1.1. World’s Energy Challenges  
 

The world energy demand grew by 2.3% in 2018, which is the fastest growth within the last decade [1]. 
The rapid increase in the global economy and population as well as the increase in heating and cooling demands, 
has resulted in more energy demand in certain regions, particularly in developing countries like India and China. 
With energy demand being on the rise, the world is faced with high dependence on fossil fuels, leading to 
increased greenhouse emissions, global climate change and increased health risks. As a result of this increase, 
CO2 emissions went up by 1.7% to hit a new record of 33.1 Gt in 2018, with the growth of fossil fuels shown 
in Figure 1, [2]. Even though renewable energy is growing fast, it’s not growing fast enough to meet the rise in 
energy demand at 1% for developed countries and 5% for developing ones [2]. 

   

 
Figure 1 Average annual global primary energy demand growth by fuel, 2010-18 [1] 

 

 

The world is moving into a future with higher energy demand and depleting energy sources, as well as 

rising environmental and health risk concerns. Hence, it’s essential to have higher energy efficiency in terms of 

technology and usage, higher integration of renewable energy, new innovative energy storage technologies, and 

dependence on non-fossil fuel energy like nuclear energy.  

 
 

1.2. Jordan’s energy situation and Power Grids Challenges 

 

With very limited resources, Jordan faces significant challenges in its energy sector due to heavy reliance on 

importing most of its energy resources. Losing access to Iraq’s crude oil in 2003 and Egypt’s natural gas, the 

country was put under critical economic conditions that had an adverse impact on both private and public sectors, 

placing the country under massive debt[3]. As shown in Figure 2, by 2015, the total accumulated commercial 

loans and the advances from the Ministry of Finance (MoF) reached 4.9 Billion JDs by the national electric power 

company (NEPCO), which was 18.8% of Jordan’s GDP and accounted for one-quarter of the total consolidated 

public-sector debt, limiting the borrowing capacity of the government [4]. In 2018, the imported crude oil and 

natural gas accounted for 92% of the total energy requirements, constituting 10% of the country’s GDP[5].  

Shortage in affordable energy supplies directly affects the public sector, increasing the budget deficit and leading 

to revenue-boosting measures (Hike taxes and fees). In contrast, private sectors face immense production costs 

due to high energy costs and higher taxes, leading to lower productivity and profitability. With Jordan’s annual 

energy demand growing at a rate of 3% [6] and the surge of Syrian refugees estimated between 660,000 and 1.26 
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million [7], coupled with the previous challenges mentioned, the government had a strong commitment to reform 

its energy sector. 

 

 
Figure 2 NEPCO Dept [4] 

 

 In 2013, the National Energy Efficiency Action Plan (NEEAP) was introduced in Jordan to set the targets 

for achieving 20% energy saving and increasing the share of renewable energy to cover 10% of the national 

energy consumption by the year 2025. To this aim, a five-year electricity tariff plan adjustment was 

implemented between 2013 and 2017 to increase NEPCO’s revenue, and an Automatic Electricity Tariff 

Adjustment Mechanism (AETAM) was adopted in 2016 to reflect global oil price changes in consumer’s tariffs, 

except those under 300 kWh per month, in order to protect poor households [4]. The Automatic tariff 

adjustments were applied from January 2018, as can be seen in Figure 3, when the three months moving average 

of the Brent crude oil price crossed the breakeven threshold of 55$ set by NEPCO and the Energy and Mineral 

Regulatory Commission (EMRC) in December 2017 as can be seen in Figure 4[4]. 

 

 
Figure 3 “Automatic Tariff Adjustments (fils per kWh)” [4] 
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Figure 4 “Rise in Global Brent Crude Oil ($ per barrel)” [4] 

 

 

Due to the tremendous efforts, financial incentives, and government promotion to attract overseas 

investments and expertise, there has been significant progress in the renewable energy sector, reaching a 

capacity of 1470 MW by late 2019, which represents 25.7% of total generation capacity, with solar accounting 

for approximately 75% of renewable power [8]. Renewable energy’s contribution to the total electricity 

generation reached 15.1%, with solar energy,  wind power, and hydropower accounting for 10.4%, 4.4%, and 

0.1%, respectively [9]. While this sheds hope for the future of the Jordanian energy sector and increases energy 

resilience [10], an increase in renewable energy in both transmission and distribution levels introduces grid-

level operational challenges that must be met to achieve optimized and efficient operation. Renewable energy 

sources such as solar and wind are non-dispatchable power units characterized by uncertainty, stochasticity, and 

being intermittent as they are dependent on variable weather conditions, which increase the flexibility needed 

to achieve supply-demand balance [11] and the need for energy storage systems [12][13]. On transmission 

levels, a fluctuation in renewable energy supply causes a sudden decrease or increase in power flow, while on 

distribution and consumer levels, a sudden change in weather conditions can lead to a reduction in renewable 

energy generation that causes a sudden load increase, affecting the grid voltage and frequency levels. Hence, 

grid operators need to rely on the frequent operation of high-ramping power supply units, which are costly to 

operate, where a sudden decrease in renewable energy occurs. In high renewable energy scenarios, the minimum 

power output of conventional power plants is an extremely sensitive factor to avoid plant shutdown, which is 

economically a worst-case scenario, causing challenges to conventional power generators’ unit commitment 

and operation [14].  

 

1.3. Demand Response potential for Jordan 

 

Demand-side management (DSM) and Demand Response (DR) systems introduce a form of flexibility 

from the consumer side[15].  In DR systems, the power distributors and Grid Operator (GO) can influence 

consumers to shift, shed and reschedule their energy consumption and electrical appliances usage by providing 

incentives or implementing dynamic pricing methods [16]. Jordan is rapidly installing smart meters around the 

country, with great potential for implementing many DSM methods such as Time of Use (TOU) pricing, Peak 

pricing, and real-time pricing schemes. Implementation of a DR scheme targeted to the residential sector can 

guarantee flexibility in unit commitment planning and hourly operation to achieve optimized demand-supply 

matching and avoiding the need to use fast-starting and costly power units in times of high energy demand or 
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low renewable energy generation. With the domestic and government buildings accounting for 46.12% of the 

electrical energy demand in 2019, implementing the DR and DSM programs is highly recommended for the 

Jordanian power sector [17]. 

 

DR had already proven benefits in Jordan. A pilot project was implemented for the principal consumers of 

NEPCO with smart meters installed, considering incentives, compensations, and non-peak times price penalties. 

The pilot project resulted in 6 million $ indirect savings of operating costs and indirectly increased efficiency 

in the transmission system with reduced bottlenecks and recommended future expansion on commercial and 

residential consumers, taking into consideration the effect of renewable energy generation [18]. Figure 5 shows 

the power demand (MW) for a day in December-2019, together with the wind and solar (PV) energy generated 

through the day. 

 

 

Figure 5 Jordan's Power Demand and Renewable Energy Generation for a day in winter at the end of 2019. 

 

As can be observed in this figure, the evening peak occurs after the rapid decline in renewable energy from 

3 to 5 PM, losing almost 380 MW of solar power, while gaining 612 MW in evening load peaking at 6 PM. 

Hence, a deficit of 992 MW needs to be provided by the GO, NEPCO, between 3 and 6 PM, which amounts to 

44% of the average load (2256 MW) of that day. It would be highly favorable for the GO to shift and reduce 

demand from the evening peak to any other time of the day, especially that period with high solar energy. It is 

notable that, unit commitment planning for optimized power dispatch is based on planning which power plants 

to operate at what hours. Each power plant has its startup time; Combined Cycle (CC) power plants need 

approximately 3 hours to operate. Each power plant has different minimum generation limits, depending on 

whether it operates in a Single Cycle (SC) or a CC and the number of activated units. Hence, a DR scheme that 

targets the evening peak in winter can lead to more flexibility in power dispatch operation and shifting from 

peak power, which forces the GO to operate fast and expensive power plants to ensure reliable operation in peak 

times. The dual challenge of minimum power and the start-up time of power plants can be solved by using day-

ahead unit commitment optimization that relies on day-ahead hourly predictions of the load, power plant 

availability, energy cost, and available power Egypt’s interconnection. Figure 6 depicts the effects of 

influencing electrical demand consumption in peak demand periods [19][20]. The price axis represents the cost 

liability on the GO for meeting specific power demand in the gird, where the cost of producing energy for 

standard power demand is relatively low, using conventional power generators, but grows extremely high in 
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peak periods. The original demand represented by Demand Curve 1 is influenced by DR at peak time, leading 

to a decrease in demand (Demand Curve 2) and lower energy prices on the GO.  

 

 

Figure 6 Standard Supply - Demand Curve of Electrical Energy Markets 

 

1.4. Machine Learning applications in future Smart Grids 

 

    Power systems from generation to distribution are key for developing societies, providing the energy needed 

in terms of daily living needs, public services, and, more importantly, driving manufacturing and production. 

Hence, having a stable, resilient, and efficient power system is essential for the economic development and 

prosperity of societies. The conventional power grid was designed to carry energy from centralized big power 

producers to consumers, where energy flow is unidirectional. Although with the introduction of renewable energy, 

distributed power generation, and energy storage, power grids are faced with having to cope with bi-directional 

energy flow and more complex design. Today, the consumers are also playing an active role in the energy 

paradigm with the introduction of smart meters and demand response programs, allowing them to participate in 

the energy management of the grid[21]. Figure 7 shows the difference between the conventional and new power 

grid[22].  

 

   The concept of Smart Grid was introduced to overcome the challenges of today’s power grid, by utilizing the 

advancements of different fields of technology, such as communication, power electronics, control, and computer 

science. A Smart grid is a power system that can sustain a two-way power and information flow between its 

different nodes, in a way that is safe, resilient and sustainable[23].  

 

The new power grid will have the following capabilities[24]:  

 

1. Being able to handle schedules and power transfer under uncertainty 

2. Integration of renewable sources and adapting to their stochastic nature 

3. Sustaining the need for higher quality and reliability of power supply    

4. Sustaining optimized power flow through the transmission and distribution networks 

5. Dealing with operation uncertainties and resolving unpredictable events, increasing power security  
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Figure 7 conventional vs. new power grid [22] 

 

In order to meet the previous capabilities and leverage the advancements in today’s technology, a lot of 

research is being done by research institutes and government entities, although in order to achieve each of the 

aforementioned, there is a series of challenges. For example, the automation and digitization of power grids will 

impose high security and reliability risks due to the risk of cyber-attacks and high reliability on the communication 

networks[25]. There are also many challenges related to renewable energy; being stochastic leaves, a space for 

uncertainty in energy generation in terms of magnitude and time since both PV and Wind power systems heavily 

rely on environmental conditions[26]. This poses challenges in power dispatch and supply-demand balancing. 

Furthermore, renewable energy sources also rely on power electronics such as converters and inverters, which 

induce many harmonics into the grid, posing power quality issues.  

 

With the introduction and deployment of smart meters and smart metering infrastructure as well as advances 

in the field of ICT “Information and Communication Technologies” and IOT ” The internet of things” and the 

introduction of smart grids and the concept of smart cities,  we now have available large amounts of data related 

to our energy system that can be utilized and studied through advanced computational techniques powered by the 

advancement of computational power that has become cheaper and more affordable. This opens up a broad field 

of research in energy system management and energy consumption reduction through advanced data analysis 

leading to hidden pattern recognitions and supply-demand predictions. Figure 8 shows the bi-directional data flow 

in a Smart Grid[27]. 
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Figure 8 Data flow in Smart Grids [27] 

 

Machine learning (ML) refers to the ability of systems to learn from given data in order to find hidden patterns 

or make future predictions. Machine learning is a group of various computational algorithms with instructions to 

make data-driven decision-making frameworks. These algorithms are developed so that they can continue from 

the data given and deal with big amounts of data achieving higher prediction rates than conventional algorithms. 

Machine learning is used in many applications from web search, filtering, recommendation systems, fault 

detection, image recognition and so on [28]. As shown in Figure 9, Machine learning is classified into two major 

classes: Supervised and Unsupervised learning. In Supervised Learning, the model is built to learn from a set of 

inputs or features to predict a known output or category, wherein the training process, the data is called labeled 

data, meaning the output data is known to us, hence, comes the name “Supervised” as we are supervising the 

training process feeding the data with each input and giving it the correct output to adjust its parameters in a way 

that decreases its prediction error in each iteration. Unsupervised learning, on the other hand, is a set of algorithms 

that are used on data that is not labeled or where the category is unknown to us, so these algorithms are used to 

detect hidden patterns or rules in the data fed, then summarizes and groups the data in a way were meaningful 

insights can be extracted.  

 

 
Figure 9 Supervised vs Unsupervised Learning [29] 
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Supervised learning can be further classified into Regression and Classification. Regression is when the 

output is a continuous value that can have infinite values; for example, detecting energy consumption or fuel 

prices, the output value can take any value. On the other hand, classification is when the predicted output is a 

categorical value, that is a part of a set of defined values; for example, when predicting if the system is in an 

error state, the output is either yes or no, or when trying to classify images to animal or non-animal and so on.  

 

Machine learning algorithms have a range of potential applications in the field of smart grids, such as 

forecasting future energy demand, clustering user types into different categories, predicting future production 

of renewable energy sources and finding the best energy pricing. Machine learning has a big potential when it 

comes to smart grids utilizing the large amount of data that will be produced and that can be leveraged to 

achieve a more efficient and smart energy system[27]. Table 1 shows the different machine learning algorithms 

used for different smart grid applications [27]. 

  

Table 1 Machine learning application in smart grids [27] 

Methods 

Applications 

Clustering 
Demand 

Response 

Energy 

Production 

Optimization 

Energy 

Pricing 

Monitoring 

and 

diagnostics 

Linear Regression  •  •  •   

Support vector machines  •  •  •  •  

Neural Networks •  •  •  •  •  

K-Means •      

Kalman filter  •  •  •   

Gaussian Process •  •  •  •   

Principal component Analysis (PCA)/ 

Independent component Analysis (ICA)/ 

Nonnegative matrix factorization (NMF) 

•      

Learning vector quantization (LVQ) •      

 

 

1.5. Related Work 

 

DR systems can be mainly classified into time-based and incentive-based pricings as well as other 

subcategories such as Direct load control (DLC), Demand Bidding(DB), emergency  DR programs (EDRP), 

Time-of-use (ToU), Real-Time Pricing(RTP), and Critical Peak Pricing (CPP)[30][31]. Aalami et al. 

introduced a DR model considering Interruptible/Curtailable loads as well as capacity market programs where 

they combined the price elasticity of the demand model with the customer benefit. Their model applied to the 

Iranian power grid peak load data can aid GOs in improving the power load curve, while considering customer 

well-being [32].  Moghaddam et al. introduced a mathematical model for incentive-based and time-based DR 

programs to consider the correct balance of penalty and incentive rates to achieve DR's best performance for 

given demand levels [33]. Baboli et al. discussed observations based on psychology and economy that 

consumers react differently to both incentive (reward) and price (punishment) based DR systems which are 

not considered in conventional DR models [20]. Qu et al. proposed an improvement to the price elasticity 

matrix of demand (PEMD) to unify the modeling of rigid and flexible loads by introducing a weighting factor 

and measured the effect of price policies and load types on calculating the elasticity matrix[34]. Wang et al. 

implemented an optimal strategy for both bidding and scheduling for aggregators of distributed energy 

resources (DER) who manage distributed solar and wind energies and battery storage systems under uncertain 
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consumer response to real-time pricing (RTP) considering uncertainties of renewable energy generation and 

consumer response[35].  

 

The employment of DR systems depends on precise knowledge of future wholesale electricity market 

prices and customer demands and future renewable energy generation.  Hence, researchers have combined 

both machine learning algorithms and DR models to overcome these challenges. Lu and Hong proposed a 

novel real-time incentive-based DR system that utilized both deep learning and reinforcement learning (RL) 

algorithms combining two Deep neural networks (DNNs) for day-ahead price and demand predictions. [36]. 

Wen et al. implemented a modified deep learning (MDL) algorithm to predict 24-ahead power demand, prices, 

and PV energy generation in incentive-based demand response models utilizing recurrent neural networks 

(RNN) architectures[37]. Pramono et al. presented an improvement in short-term load forecasting for DR 

systems using an ensemble of two DL approaches; Convolutional neural networks (CNN) and long short-term 

memory (LSTM)-RNN,  showing higher performance over conventional models [38].  Hlalele et al. presented 

an optimization model that considers the combination of direct load control demand response and economic 

dispatch under renewable obligation policies, where the model maintains a predefined renewable energy share 

in the mix of different energy sources[39]. Zeng. et al. proposed a demand response modelling approach for 

increasing the efficiency of renewable energy deployment, which considers operational improvements and a 

system planning perspective. Their model captures the correlation of uncertain variables such as renewable 

energy generation, customer demand and changing responsiveness to DR and utilizes clustering methods to 

implement a scenario reduction that reduces the computational complexity of the model[40]. Balasubramanian 

and Balachandra formulated a modeling approach to optimally implement an incentive-based demand response 

to match the variations of electrical demand and supply. Their model is coupled with a  focus on assessing 

voluntary-based consumer-centric demand response systems that are less complex and cost-effective to other 

methods[41]. 

 

 

 Table 2 shows recent DR studies systems on multiple scales of the residential sector using different DR 

schemes. 

 

Table 2 Recent studies on Residential DR systems 

Ref. DR Type Study Scale Methodology Achievements 

[42] Hybrid Price-based 

DR (HPDR) 

Residential micro-

grid. 

Day-ahead HPDR scheduling to a 

residential micro-grid, considering 

uncertainty related to generation and 

dispatch. 

In comparison to ToU and RTP 

and fixed-rate (FR) pricing, 

HPDR, which is a combination of 

ToU and RTP, showed a lower 

decrement in the peak-to-valley 

index (PtV) by 12% and 

Coefficient of Variation 

Percentage (CVP) by 25% and 

increased social welfare by 18%. 

[43] ToU Residential Household DR strategies (Rule-based and 

Machine-Learning (ML) Based) for 

controlling a heat pump and thermal 

storage system in a smart-grid ready 

residential Household. 

The proposed ML prediction-

based smart controller under a 

ToU DR scheme showed superior 

performance reducing electricity 

end-use usage, utility generation 

cost, and carbon emission by 

41.8%, 39%, and 37.9%, 

respectively. 

[44] Dynamic Price-

based 

Residential Local 

energy Market 

Agent-based simulations for pricing 

strategy and demand shifting strategy 

The model was simulated for a 

LEM with 100 households, 
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under dynamic pricing DR are applied 

on a local electricity market (LEM) 

based on the German energy market. 

increasing its local sufficiency by 

16% through DR and local 

Trading, showing a 10c€/kWh 

reduction in annual electricity 

costs as well as 40% reduced 

peaks. 

[45] ToU 5000 Residential 

Households 

DR strategies, using 18 months of data 

in Ireland where different ToU 

schemes were applied to 5000 

Households coupled with information 

feeding (in-home display units (IHD), 

monthly billing, etc..) 

The ToU DR coupled with the 

information feed reduced energy 

demands for the given household, 

especially in peak demand periods. 

However, after implementation, 

little DR impact was observed by 

changing the distance between the 

peak and off-peak prices. 

[46] Dynamic Price-

based 

2 Residential 

Buildings 

OpenStudio and EnergyPlus to assess 

the effects of DR potential on HVAC 

systems through changing temperature 

set points in two residential buildings 

in Texas, USA  

In applying two different types of 

real-time dynamic tariff pricing, 

simulation results showed that a 

reduction potential of 10.8% in 

energy costs could be achieved 

through the proposed DR 

controller without significant 

impact on comfort levels and 

savings of 24.7% peak load and 

4.3% of energy for HVAC could 

be achieved annually. 

[47] Dynamic Price-

based 

Residential Household Dynamic Price-based DR by modeling 

the optimal consumer response through 

fuzzy reasoning (FR) and 

Reinforcement Learning (RL) 

Simulation results showed a power 

consumption smoothing by 15% 

and energy costs reduction by 

18.5% can be achieved by 

considering consumer preferences 

through morning and evening 

demand peak periods. 

[48] ToU and Incentive-

based 

100 Residential 

Households 

Simulation of two DR systems: (1) an 

augmented ToU DR system solved 

using a stochastic optimal load 

aggregation model. (2) an incentive-

based DR is solved using a two-stage 

stochastic unit commitment (UC) 

model satisfying operational cost 

reduction and consumer convenience. 

Simulations for one load 

aggregator and 100 Residential 

Households showed that under 

augmented ToU DR with 60% 

consumer participation level, 

generation costs can be reduced by 

24% and load profiles’ standard 

deviation by 42%. Although with a 

higher 60% consumer 

participation level reaching 80%, 

the model becomes less efficient. 

Although under the incentive-

based DR, 77% standard deviation 

and 20% generation costs 

reductions can be achieved. 

 

 

 

 

 

1.6. Thesis Contribution  
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Very few studies discussed the possibilities of DR and DSM in Jordan. Tawalbeh et al. addressed the 

potential of residential peak shaving to reduce peak demands [49]. They showed that an average of 3.5 kWh of 

peak load reduction per day could be achieved through adjusting the residential tariffs in peak times from 5 to 

8 pm, using TOU pricing. Another research conducted by Jarad and Ashhab emphasized the potential for energy 

saving in the Jordanian residential sector through energy efficiency measures, where they reported a saving of 

15% in energy consumption and 22% in cost could be achieved through the use of efficient lighting and solar 

heaters by applying for an hourly analysis program (HAP) software  [50]. The insight gained from these studies 

highlights further the potential of DR in giving more incentives for residential and commercial users to pursue 

energy-efficient electrical appliances and usage. However, this potential has not yet been exploited because 

there is no understanding of the factors that amplify this potential. This is mainly due to the lack of a conceptual 

framework and methodological approach that can be applied to a robust data set to quantify the main 

implications of using DR applications in the Jordanian power sector. This research aims to fill the gap by 

presenting a detailed day-ahead price-based demand response model for the residential sector in Jordan with the 

following contributions:  

 

1. A well-defined and optimized Deep Learning model for accurate day-ahead hourly short-term load 

forecasting (STLF) is trained on 4-years of Jordan’s hourly electrical demand from 2016 to 2019. The 

model’s architecture and input features follow state-of-the-art feature engineering based on recent 

research discussed in detail. Up to date, there are very few Jordanian case studies that examined daily 

hourly STLF rather than day-ahead hourly STLF, such as [51], where they used only one year of 

electrical demand data. This research proposes a new set of time series features that are novel to 

previous works on Jordan’s electrical demand forecasting.  

 

2. A comprehensive demand response model for the Jordanian power sector is introduced, considering the 

interaction between the Power Generators (PGs), GOs, and Service Providers (SPs), which uses the 

estimated day-ahead hourly demand STLF, considering the detailed data on generation capacities and 

costs of Jordan’s power suppliers as well as bulk consumers’ peak load and bulk supply prices. A precise 

PEMD estimation was implemented for Jordan’s residential sector based on recent research on the 

short-term price elasticity of Jordan’s residential and the analysis of the different types of electrical 

appliances and their daily operational hours according to the latest surveys and studies present.  To the 

best of our knowledge, this is the first study in Jordan’s electricity market to estimate the DR impact on 

the residential sector and find the potential implications in peak demand reduction and generation 

savings.  

 

1.7. Thesis Outline  
 

The rest of this thesis will be depicted as follows: Chapter 2 discusses the Jordanian power sector in detail, 

Chapter 3 presents the Demand response model for the Jordanian power sector, Chapter 4 introduces the hourly 

day-head demand prediction model, Chapter 5 shows the results of the day-ahead prediction model, Chapter 6 

presents a detailed analysis of Jordan’ residential sector PEMD and Chapter 6 will conclude the thesis. 
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Chapter 2: Jordan’s Electricity Sector 
 

2.1. Electricity sector Overview   
 

The electrical sector in Jordan has undergone reform starting from 1996, where the generation, transmission, 

and distribution sectors were privatized in 1999. The overall architecture of the Jordanian electricity sector is 

shown in Figure 10 and is mainly composed of four layers: Generation, Transmission, Distribution, and 

Consumption[52]. NEPCO, operated by the government, acts as the GO of the power grid under a single buyer 

model as well as the transmission sector operator. The long-term strategy of the power grid is under the 

responsibility of the Ministry of Energy and Mineral Resources (MEMR), whereas the EMRC is responsible for 

establishing regulations and licensing on all levels of the power grid from generation to distribution as well as 

setting laws and tariffs in the electricity sector [52][53].  

 

 

 
 

Figure 10 Jordan's Electricity Sector – 2019 

 

 

2.2. Generation Sector 
 

 

Jordan’s power generation is mainly based on thermal power plants followed by renewable energy and 

Egypt’s interconnections, as shown in Table 3. The Table shows the details of each respective power supplier and 

their generation capacities by 2019, based on the latest data from the  Japan International Cooperation Agency 

(JICA) report [52] and the respective websites of the respective power plants’ websites, where the generation 

capacities can be slightly higher or lower depending on hot or cold seasons. The renewable energy capacity is 

shown in Table 3 only includes the transmission level suppliers, not the distribution and consumer level generation. 

Jordan is interconnected with Egypt with a total capacity of 550 MW, utilizing a 400 kV submarine cable, where 

up to 250 MW can be used according to energy availability and other factors, while the rest are reserved for 

operational purposes [54].   
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Table 3 Jordanian Power Plants – 2019  

Power Plants Unit 
Available 

Capacity 

Fuel Type Average Cost  

(JOD */MW) P S T 

 

C
E

G
C

O
 

ATPS 5 * ST 130 * 5 MW NG HFO - 

203.46 RISHA 2 * GT 58 MW NG LFO - 

Rehab CC 297 MW NG LFO - 

 

S
E

P
C

O
 Samra I CC 270 MW NG LFO - 

61.06 
Samra II CC 270 MW NG LFO - 

Samra III CC 400 MW NG LFO - 

Samra IV CC 220 MW NG LFO - 

 

IP
P

 

IPP1 CC 400 MW NG LFO - 59.85 

IPP2 CC 373 MW NG LFO - 64.89 

IPP3 DE 573 MW NG HFO LFO 231.04 

IPP4 DE 241 MW NG HFO LFO 121.17 

IPP5 CC 485 MW NG LFO - 60.09 

Egypt - 550 MW - - - 52.79 

PV - 640.5 MW - - - 72.79 

WIND - 369.6 MW - - - 79.94 
  *Jordanian dinar 

 

The average costs shown in Table 3 are based on NEPOC’s 2019 - annual report, which are calculated 

according to the total amount of energy purchased divided by the total amount of money paid to the respective 

power plants in 2019 [17]. Generation costs include many factors such as the base costs, capacity costs, daily unit 

start-up costs, fuel price. RISHA is a special case, where its natural gas is extracted from Jordan; hence it is always 

maxed out according to the available gas. IPP3 and IPP4 are the most expensive units since they are composed of 

small and fast starting 15 MW generators that are used in peak demand when sudden and rapid changes in energy 

demand occur. Renewable energy is under the contract of Take-or-Pay, where unit commitment scheduling and 

operation aim to utilize all the energy produced. All power plants operate on natural gas as a primary fuel, where 

heavy and light fuel oils (HFO & LFO) are used as secondary fuels. 

 

The main electrical power sources in Jordan are classified into: Government-owned/ partially owned power 

plants, Independent Power Plants (IPPs) and the Egyptian interconnection. The government holds 100% of the 

shares of the Samra Electricity Power Company (SEPCO), being the largest energy producer, while having only 

40% of the shares of the Central Electricity Generation Company (CEGCO), being the second-largest energy 

producer. The different independent power suppliers have different shareholders and private investors such as 

Mistui, Korea Electric Power Corporation (KEPCO) and Mitsubishi.  

 

 

2.3. Transmission Sector  
 

In 1996 the Jordanian Electricity Authority was restructured into NEPCO and had the responsibility over the 

power sector from generation to distribution, and then in 1999, both generation and distribution sectors were 

privatized[52]. Currently, NEPCO is responsible for the transmission grid, whereby at the end of 2019, the 

transmission level substation capacity amounted to 15265 MVA with 65 main substations with 1376 circuit 

kilometers of 400 KV transmission lines and 3764 circuit kilometers of 132 KV transmission lines. Nepco’s peak 

load amounted to 3205 MW and 3380 MW in 2018 and 2019 respectively and is expected to increase by around 
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2.9% annually. NEPCO also ensures through its National Control Center (NCC) to provide a continuous and 

reliable supply of electricity linking generation and distribution, by coordinating between all key players in the 

power sector from different power plants to the MEMR and EMRC[17]. The main responsibilities for NEPCO 

are[17] [52]:  

 

1. Acting as the system operator of the power system in Jordan and controlling demand-supply balance. 

2. Being responsible for constructing, operating, and maintaining substations and transmission lines in 

the transmission grid.  

3. Performing power system research, planning and development.  

4. Acting as a single buyer of electricity from power plants and single supplier of electricity to bulk 

consumer.  

5. Securing the fuel for the thermal power plants.  

6. Being responsible for the interconnections with neighboring countries such as Egypt and previously 

Syria.  

7. Achieving sustainable development by increasing dependency on local resources and enhancing 

renewable energy usage.  

 
 

The following Table shows the expected increase in Electricity Demand and Electrical energy Purchasing by 

NEPCO from 2020 to 2040[17]:  

 

 

Table 4 Electrical Demand Forecast in the Transmission sector  

Year 
Max. Demand* Electrical Energy Generated** 

MW Growth (%) GWh Growth (%) 

2020 3050 3.0 19850 2.9 

2022 3240 3.1 21110 3.1 

2025 3535 2.9 23205 3.2 

2030 4058 2.8 27011 3.1 

2035 4665 2.8 31446 3.1 

2040 5360 2.8 36610 3.1 

*Summer loads ** Sent-out (purchased) 

 

 

 

2.4. Distribution and end consumers  
 

The Distribution sector compromising the bulk energy supply is composed of three private distribution 

companies: Jordan Electric Power Company (JEPCO), Irbid District Electricity Company (IDECO, Jordan north 

area), and Electricity Distribution Company (EDCO), that distribute energy to consumers in the central, northern 

and southern parts of Jordan respectively [52]. Besides, two categories of large energy consumers (Principal 

Consumers), PC1 and PC2, are a part of the bulk energy supply.  The Consumption load types and percentages 

are calculated according to the 2019 NEPCO report, without taking into account the PC1 and PC2, where domestic 

and governmental consumers reach up to 49.1% of the main energy consumption, where 6% of it accounts for the 

governmental buildings and 1.5% for others[17].   Table 5 shows the five bulk consumers, which are the main 

customers of NEPCO, with JEPCO being the largest consumer with 61.26% of peak demand, out of all the bulk 
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consumers. The bulk supply prices are categorized into: Day energy pricing from 8:00 – 24:00, Night energy 

pricing from 00:00 – 7:00, and Peak tariff, which depicts the demand capacity cost of the highest hourly electrical 

demand within the period of peak demand tariff as announced by MEMR  in the day with the highest electrical 

demand as can be seen in Table 6 [55][56][57]. The peak periods are between 5 PM and 9:30 PM, representing 

the evening peak where the demand is highest throughout the year. The total peak demand of the three distribution 

companies accounts for almost 96% of the total peak demand in the bulk consumer, which shows there is great 

potential for the DR system targeting their respective consumers. As previously discussed, domestic and 

governmental buildings account for almost 49% of their energy consumption. 

 

 

 

Table 5  Bulk supply prices and Peak Demand 2019 

Bulk 

Consumers 

Bulk Supply Price 

Peak Demand 

(MW) 

Peak Demand 

% 
Day 

(Fils/kWh) 

Night 

(Fils/kWh) 

Peak 

(JD/kW/ 

Month) 

JEPCO 71.90 61.88 2.98 2129.9 61.26% 

EDCO 74.02 64.07 2.98 580.8 16.70% 

IDECO 58.20 48.29 2.98 622.7 17.91% 

PC1 237 170 2.98 71.6 2.06% 

PC2 124 109 2.98 72.1 2.07% 

 

 

Table 6 Peak Tariff Periods for 2020 

Periods Period of Peak 

 Demand Tariff Start End 

2021-01-01 - 00:00 2021-01-31- 24:00 (17:00 – 20:00) 

2021-02-01 - 00:00 Wintertime End 24:00 (17:30 – 20:30) 

Summertime starts - 00:00 2021-06-30 - 24:00 (18:30 – 21:30) 

2021-07-01 - 00:00 2021-08-15 - 24:00 (18:00 – 21:00) 

2021-08-16 - 00:00 2021-09-30 - 24:00 (17:30 – 20:30) 

2021-10-01 - 00:00 Summertime End - 24:00 (18:00 – 21:00) 

Wintertime starts - 00:00 2021-12-31 - 24:00 (17:00 – 20:00) 
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Chapter 3: Day-ahead Demand Response 

modeling   
 

3.1. Day-ahead Demand Response Model  
 

A dynamic price or incentive-based hourly DR is extremely invasive to consumers since they are less likely 

to have enough time to reschedule their demands well ahead of time and be more stressful for residential 

consumers. Hence, a day ahead DR model is more appropriate for residential consumers, having enough time to 

adjust the loads impacting their electricity bills the most, and incentivizing them to increase their efficiency in 

energy usages, such as optimizing their heating and cooling loads. The proposed DR model in this study is 

depicted in Figure 11, which is supposed to be implemented by the GO targeting the Residential consumers.  

 

 

Figure 11 Proposed Day-ahead Demand Response Model for Jordan in this study 

 

Precise day-ahead information on electrical demand, generation availability, generation costs, and the 

expected amount of renewable energy generated is highly crucial to implementing the DR system [19].  The GO 

(NEPCO) aims to reduce the cost of energy production, especially at peak periods, to reduce the expensive energy 

purchased from IPP3 and IPP4, while increasing the demand in off-peak periods to maximize its net profit. The 

DR system can influence consumer behavior from peak to off-peak and allow the grid higher flexibility acting as 

a safety margin in cases of high expected demand. NEPCO’s main responsibility is to implement a precise day-

ahead hourly demand prediction to estimate the demand every hour for the next day. Since the GO, as per grid 

regulations, provides the fuel for the power plants, the day-ahead cost of energy purchase is correlated to fuel 

prices known by the GO; therefore, the generation costs are given. Furthermore, the GO utilizes the PEMD to 

predict the effects of different prices on the residential consumers and decide the best price to achieve the required 

goals relating to peak demand reduction and off-peak filling by increasing the prices at peak loads and reducing 

them at off-peak periods. It is noted that the prices are announced to the distribution companies at the start of each 
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day, where they announce them to their consumers through specially designed schemes. 

In this study, it is assumed that the generation schedule is given through unit commitment analysis done by 

the GO by communicating with the power suppliers, where the renewable energy plants also provide the 

renewable generation predictions. The profit-seeking maximization model of the GO, considering the Jordanian 

power grid consumers, excluding the energy exports, can be expressed by:  

 

𝑀𝑎𝑥      ∑ ∑ (∑𝐼𝑐,ℎ(𝑠𝑝𝑐,ℎ, 𝑑𝑠𝑐,ℎ)

𝐶

𝑐=1

− ∑ 𝐶𝑝𝑠,ℎ(𝑏𝑝𝑝𝑠,ℎ, 𝑑𝑝𝑝𝑠,ℎ)

𝑃𝑆

𝑝𝑠=1

) +    

𝐻

ℎ=1 

∑ 𝑃𝐶𝐼𝐶

𝐶

𝑐=1

(𝑑𝑝𝑐 , 𝑑𝑝𝑝𝑐) 

𝐷

𝑑=1

 (1) 

Subject to: 

𝑑𝑠𝑐,ℎ 
= 𝑑𝑠𝑐,ℎ

0

[
 
 
 

1 + 𝜀ℎ
 
𝑠𝑝𝑐,ℎ−𝑠𝑝𝑐,ℎ

0
 

𝑠𝑝𝑐,ℎ
0 + ∑  

24

ℎ′=1,

ℎ′≠ℎ

𝜀ℎ
′
𝑠𝑝𝑐,ℎ′−𝑠𝑝𝑐,ℎ′

0

 

𝑠𝑝𝑐,ℎ′
0

]
 
 
 

 (2) 

𝑠𝑝𝑝𝑐,ℎ ,𝑀𝑖𝑛 ≥ 𝑠𝑝𝑐,ℎ ≥ 𝑠𝑝𝑝𝑐,ℎ,𝑀𝑎𝑥  (3) 

 

Where  𝐼𝑐,ℎ is the income at hour ℎ ∈ {1,2 . .  24}  from the bulk consumer of type 𝑐 ∈ {1,2, . .5}, which is a function 

of bulk supply price (𝑠𝑝𝑐,ℎ )and the demand sold (𝑑𝑠𝑐,ℎ) at hour ℎ for consumer 𝑐. 𝐶𝑝𝑠,ℎ is the cost purchasing 

power from power supplier 𝑝𝑠 ∈ {1,2, . . 𝑃𝑆}  at hour ℎ ∈ {1,2 . .  24}, which is a function of the buying price ( 

𝑏𝑝𝑝𝑠,ℎ ) estimated by the average prices shown in Table 3, and the demand purchased ( 𝑑𝑝𝑝𝑠,ℎ). At each hour 

ℎ, all the costs of purchasing demand from each 𝑝𝑠 depict the total hourly cost depending on which power plants 

were utilized, according to the unit commitment by the GO.   𝑃𝐶𝐼𝐶 is the peak capacity income per consumer 

𝑐 which is a function of the highest demand peak (𝑑𝑝𝑐) for the respective consumer 𝑐  and their demand peak 

price (𝑑𝑝𝑝𝑐). ps denotes the total power supply units utilized at the respective hour. 𝑠𝑝𝑝𝑐,ℎ ,𝑀𝑖𝑛 and 𝑠𝑝𝑝𝑐,ℎ,𝑀𝑎𝑥 

are the upper and lower ranges of the bulk supply price, as determined by the GO. 

𝜀ℎ
   and 𝜀ℎ

′  represent the self and cross-price elasticities of demand, respectively, where they capture the effect 

of electricity price change for customers on their electricity consumption. This relationship lies at the heart of DR 

systems to determine the price set by utilities to achieve economic benefits in the power market and technical 

benefits related to the operation of the power system [21].  To capture the price elasticity of demand on 24 hours 

under the assumption that the rescheduling of the production doesn’t go beyond a 24-hour interval, the PEDM is 

formulated as [21][22]: 

 

[
 
 
 
 

Δ𝑑𝑠𝑐,1/𝑑𝑠𝑐,1
0

⋮
Δ𝑑𝑠𝑐,𝑖/𝑑𝑠𝑐,𝑖

0
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Δ𝑑𝑠𝑐,24/𝑑𝑠𝑐,24

0 ]
 
 
 
 

=
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⋮
𝜀24,1
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𝜀𝑖,𝑖 

 
 
…
 

… 𝜀24,𝑗 …

𝜀𝑖,𝑗24

⋮
𝜀24,24]

 
 
 
 

∗

[
 
 
 
 

Δ𝑠𝑝𝑐,1/𝑠𝑝𝑐,1
0

⋮
Δ𝑠𝑝𝑐,𝑖/𝑠𝑝𝑐,𝑖

0
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Δ𝑠𝑝𝑐,24/𝑠𝑝𝑐,24

0 ]
 
 
 
 

   (4) 

 

The PEMD relates the effect of the change of price in any hour of the day depicted by 𝑖 to the change in 

demand of the hour itself as well as other hours depicted by 𝑗. 𝜀𝑖,𝑖  represents the self-elasticity, which relates the 

change of price in the period 𝑖 to the change in demand in that period, whereas 𝜀𝑖,𝑗  represents the cross-elasticity, 

relating the change of demand in hour i to the change in price in another period j, which are shown as 𝜀ℎ
  and 𝜀ℎ

′  

in Eq (2), respectively. 
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The proposed model was developed under the following assumptions:  

 

1. Daily environmental and residential demand data are available with an hourly sample rate.  
2. The day-ahead generation electric power prices are available as a single value for each power plant. 
3. The day-ahead selected power plants for dispatch by unit commitment are available for each day.  
4. Both self-elasticity and cross elasticities for each hour are known and available for the grid operator each 

day, where they were assumed constant in this research.  
5. The demand response algorithm is run and implemented at 00:00 of the new day, when the final demand 

hour of the previous day is received, then the new prices are announced up to 24 hours.  
6. The response to the change in prices for the residential sector is assumed at the distributer level, where 

when the distributer receives the new prices, they have their methods of implementing the DR to each 
different section and types of their consumers by means of having the same effect as if the prices where 
directly increased for the consumers.    

 

 

3.2. Price Elasticity of Demand Matrix  
 

The price elasticity of demand in economic theory, as previously mentioned, depicts the relationship between 

the change in demand relative to the change of price and is formulated as[58]:   

 

 𝜀 =
Δ𝑞/𝑞𝑜

Δ𝑝/𝑝𝑜
 (5) 

 

Where 𝜀 is the elasticity for a specific time period, 𝑞𝑜 is the initial quantity of demand in that period, 𝑝𝑜 is the 

initial price, Δ𝑞 is the change in demand quantity in relevance to the change in price Δ𝑝. Highly Elastic demand 

is depicted by a large 𝜀 where demand is highly sensitive to price. As previously discussed and in order to capture 

the price elasticity of demand on a 24-hours period, the following equation is used [34][35]:  

 

 

 

 

[
 
 
 
 

Δ𝑞1/𝑞1𝑜

⋮
Δ𝑞𝑖/𝑞𝑖𝑜

 ⋮
Δ𝑞24/𝑞24𝑜]

 
 
 
 

=

[
 
 
 
 
𝜀1,1

… 𝜀1,𝑗 … 𝜀1,24

⋮            ⋮
𝜀𝑖,1 

⋮
𝜀24,1

… 
  

𝜀𝑖,𝑖 

 
 
…
  

… 𝜀24,𝑗 …

𝜀𝑖,24 

⋮
𝜀24,24]

 
 
 
 

∗

[
 
 
 
 

Δ𝑝1/𝑝1𝑜

⋮
Δ𝑝𝑖/𝑝𝑖𝑜

 ⋮
Δ𝑝24/𝑝24𝑜]

 
 
 
 

 

 

(6) 

 

The PEMD relates the effect of the change of price in any hour of the day depicted by 𝑖 to the hour itself as well 

as other hours depicted by 𝑗. 𝜀𝑖,𝑖  represents the self-elasticity, which relates the change of price in the period 𝑖 to 

the change in demand in that period and is described as: 

 

 𝜀𝑖,𝑖 =
Δ𝑞𝑖/𝑞𝑖𝑜

Δ𝑝𝑖/𝑝𝑖𝑜

 (7) 

 

Whereas 𝜀𝑖,𝑗  represents the cross-elasticity, relating the change of demand in hour 𝑖 to the change in price in 

another period 𝑗 is represented by:  

 

 
𝜀𝑖,𝑗 =

Δ𝑞𝑖/𝑞𝑖𝑜

Δ𝑝𝑗/𝑝𝑗𝑜

 (8) 

 

In the case of a price increase, the self-elasticity is always negative for a given our 𝑖 and all the respective 

𝑗 elements for that column are negative. Finally, for any given hour 𝑖, the total change in demand for that hour is 

the amount that is shed depicted by the self-elasticity and the amount that gets redistributed to other hours 

represented by the cross-elasticity and is given by:  
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Δ𝑞𝑖

𝑞𝑖𝑜

= 𝜀𝑖𝑖 ∗
Δ𝑝𝑖

𝑝𝑖𝑜

+ ∑  

24

𝑗=1,
𝑗≠𝑖 

𝜀𝑖𝑗 ∗
Δ𝑝𝑗

𝑝𝑗𝑜

 (9) 

 

Where Equation 9 is used to predict the electrical demand at a given hour 𝒊, given the change in prices and the elasticity 

matrix elements for the 𝒊𝒕𝒉 column. Finally, by  substituting 𝒒  for 𝒅 (standing for electrical demand), the electrical demand 

output from the DR for hour 𝒊 is predicted by [20]: 

 

 

 
𝑑𝑖  

= 𝑑𝑜𝑖
+ 𝜀𝑖𝑖 ∗ 𝑑𝑜𝑖

∗
Δ𝑝𝑖

𝑝𝑜𝑖

+ ∑  

24

𝑗=1,
𝑗≠𝑖 

𝜀𝑖𝑗 ∗ 𝑑𝑜𝑖
∗
Δ𝑝𝑗

𝑝𝑜𝑗

 (10) 

 

This equation is the basis of equation 2 that was presented in the model discussed in the last section. 

 

 

 

 

3.3. Consumer behavior modeling  
 

The PEMD reflects the consumer response to a DR program represented by the values of self and cross 

elasticities and their distribution in the PEMD, where different DR policies and consumer response patterns to the 

price change can impact the estimation of the PEMD. Figure 12 represents the two types of PEMD modeling a 

day-head DR policy (𝑎) and an hour-ahead DR policy (𝑏)&(𝑐). In day-ahead DR polices, prices are announced 

one day earlier or at the start of the day, where consumers can re-schedule their demand for each interval 𝑖 of the 

day, hence all elements in the PEMD can be non-zero. Whereas in hour-ahead DR, consumers can only reschedule 

the price of the next hour, where they only have information on the current price and hour ahead price, hence it is 

unlikely that they can reschedule their demands ahead of time, making all cross-elasticities above the diagonal 

zero[34]. Some researchers considered all off-diagonals to be zero in this case [35].   

 

 

 

Figure 12 PEMD under Different Policies: (a) Day-ahead DR, (b)&(c) Hour-ahead DR 

 

The PEMD estimation is also correlated to how consumers in different markets reschedule their demands to 

different hours of the day, represented by the cross elasticities’ distribution in the PEMD. Figure 13 shows the 
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different types of consumer rescheduling, which can be assumed into five different categorical behaviors[58]:  

 

Figure 13 Different Consumer rescheduling behaviors in DR markets 

 

 

The categories of behaviors for day-ahead demand response are (1), (2), and (5), where the last two are the 

most probable, as it's unlikely that consumers are extremely optimized to fully reschedule their demand to hours 

of least price. The difference between flexible and inflexible consumers is the time horizon to where demand at a 

certain hour is rescheduled to other hours of the day, depicted by the arrow lengths in Figure 13. The selection of 

this horizon is based on a detailed analysis of the types of loads that exist, where water heating, for example, can 

be shifted to a larger time horizon prior to periods of high demand than other appliances such as lighting [59]. 
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Chapter 4: Deep Neural networks for day-

ahead short-term load forecasting 
 

 

4.1. Machine learning and neural networks  
 

Neural Networks is a machine learning algorithm used for supervised learning, in which the algorithm trains 

the computer to learn from given data and make future regression predictions or classifications. The name comes 

from the analogy of neural networks to the human brain since it is constituted of thousands of simple nodes called 

neurons, each of these neurons are connected in a dense matter, in layers called hidden layers. The data is fed 

into the neural network in a forward manner called “Forward Propagation” then, the neurons in each layer 

between the input and output layers receive the transformed data from all connected neurons to its input and 

sends the data combinations to all neurons connected to its output. Figure 14 represents a general overview of a 

neural network[36]. Due to the intricate connections and non-linear activations of neural networks, a neural 

network can model any non-linear function[60].  

 

 
Figure 14 Neural Network Representation 

 

Every vertical layer between the input and output layers is called a hidden layer and consists of several neurons. 

Every neuron in the hidden layers consists of several inputs, weights, a bias, output, and an activation layer. The 

biases and weights represent a linear regression, and their output is fed into a non-linear activation function.  

 

4.2. Neuron Network modeling  
 

Neurons are the building blocks of a neural network, as shown in Figure 15 [61]. A single neuron consists of 

wights and biases as well as an activation/transformation function that maps the input of the neuron to its output. 

A single neuron is very similar to a logistic regression, where a linear model is fed into a non-linear transformation 

such as the sigmoid function, which intern limits the outputs and transforms it into a probability metric bound 

between 0 and 1. 



22 

 

 

 
Figure 15 A Single Neuron 

 

The following equations govern the mathematical representation of a neuron with a sigmoid activation in 

vector notation:   

 

 𝒵𝑗
[𝑙]

= 𝑤𝑗
[𝑙]𝑇 ∗ 𝑥(𝑖) + 𝑏𝑗

[𝑙]
 (11) 

 

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑: 𝑔(𝑍) =
1

1 + 𝑒−𝒵
 (12) 

 

Equation 11 represents the output of the neuron 𝑗 in the hidden layer 𝑙, where 𝑤 is the weight vector of that 

neuron, 𝑏  is the bias and 𝑥(𝑖)  is the 𝑖𝑡ℎ  training example from the input layer. Equation 12 represents the 

activation function, which is called the Sigmoid function, as shown in Figure 15. The General formula for the 

output of each neuron in a certain layer is depicted as follows with a non-vector notation:  

 

 𝑎𝑗
[𝑙]

= 𝑔[𝑙] (∑ 

𝑘

𝑤𝑗𝑘
[𝑙]

𝑎𝑘
[𝑙−1]

+ 𝑏𝑗
[𝑙]

) = 𝑔[𝑙] (𝑧𝑗
[𝑙]

) (13) 

 

Where 𝑎𝑗
[𝑙]

 is the activation (Output) of the 𝑗𝑡ℎ neuron in layer 𝑙 , 𝑔[𝑙] is the activation of the neuron in that layer, 

𝑎𝑘
[𝑙−1]

 is the  𝑘𝑡ℎ input to that neuron from the previous layer. 𝑏𝑗
[𝑙]

 is the bias of the 𝑗𝑡ℎ neuron in layer 𝑙. 𝑤𝑗𝑘
[𝑙]

 is 

the 𝑘𝑡ℎ weight in the 𝑗𝑡ℎ neuron in layer 𝑙.  

 

4.3. Activation Functions 
 

Activation functions introduce a form of non-linearity to the model and apply a transformation to the inputs 

of the neurons and decide the activation level of each neuron, wherein the case of the sigmoid function, the output 

is bound between 0 and 1 as if deciding if the neuron is turned on or off. The choice of activation function greatly 

affects the performance of training the network, where each function has different characteristics related to the 

non-linear regions it has, region boundary, and the computational costs of the function and its derivation. Each 

function has different mathematical properties related to approximation and optimization theory[62]. The 

following Table 7 shows some of the popular activation functions currently in use and their comparison based 

on [63]: 

 



23 

 

 

 

 

Table 7 Activation Functions and their comparison 

Name Equation Derivative Shape Advantages Dis-Advantages 

Sigmoid 

 

𝒈(𝒛) = (
𝟏

(𝟏 + 𝒆−𝐳)
) 

 

𝒈′(𝒛) = 𝒈(𝒛)(𝟏 − 𝒈(𝒛)) 

 

 

▪ Easy to understand. 

▪ Mostly Utilized in 

shallow networks. 

▪ Used as output layer 

for classification. 

[64] 

 

▪ Slow Convergence 

▪ Non-Zero-centered 

output. 

▪ Gradient Saturation 

▪ Sharp Damp Gradient 

during 

backpropagation 

▪ Vanishing Gradients 

[63] 

 

Tanh 

(Hyperbolic 

Tangent) 

 

 

𝒈(𝒛) =
𝒆𝒛 − 𝒆−𝒛

 𝒆𝒛 + 𝒆−𝒛
 𝒈′(𝒛) = 𝟏 − 𝒈(𝒛)𝟐 

 

▪ Zero centered 

output 

▪ Enhanced 

backpropagation 

▪ Better performance 

of Sigmoid 

[63][65] 

 

▪ Vanishing Gradients 

▪ Achieves a Gradient of 

1 only at 0 input. 

[63] 

Relu 

(Rectified 

Linear 

Unit) 

 

𝒈(𝒛) = 𝐦𝐚𝐱(𝟎, 𝒛)

= {
𝐳,      if 𝐳 ≥ 𝟎
𝟎,      if 𝐳 < 𝟎

 

 

𝒈′(𝒛) = {
𝟏,      if 𝐳 ≥ 𝟎
𝟎,      if 𝐳 < 𝟎

 

 

▪ Most widely used 

[66] 

▪ Fast Convergence 

[28] 

▪ Better performance 

and generalization 

over sigmoid and 

tanh [67] 

▪ Has linear 

characteristics. No 

Exponentials or 

Divisions[68]. 

 

▪ Can Overfit easily in 

comparison to 

Sigmoid [69] 

▪ Dead neurons in the 

negative input region, 

because the gradient in 

that region is zero and 

the parameters do not 

get updated [68]. 

Leaky 

Relu 
𝒈(𝒛) = {

𝒂𝒛     for z ≤ 𝟎
𝒛     for z > 𝟎

 

𝒈′(𝒛) = {
𝟏,      if 𝐳 ≥ 𝟎
𝒂,      if 𝐳 < 𝟎

 

 

𝑎~ 0.01 

 

▪ Solves the dying 

neurons problems 

by introducing a 

non-zero gradient in 

the negative region 

and having Better 

Sparsity 

[70] 

 

▪ It is comparable to the 

Relu, except having 

non-zero gradients 

over the entire 

duration. 

 

Elu 

(Exponential 

Linear Unit) 

𝒈(𝒛)

= {
𝒛,  if z > 𝟎

𝜶(𝐞𝐳 − 𝟏),  if z ≤ 𝟎
 

𝒈′(𝒛) = {
𝟏,      if 𝐳 ≥ 𝟎
𝒈(𝒛) + 𝒂 ,  if 𝐳 < 𝟎

 

 

▪ Avoids dying 

neuron. 

▪ The saturation 

plateau in the 

negative region 

allows for more 

enhanced learning 

of robust 

representations. 

▪ Faster learning and 

better 

generalization. 

▪ Better Sparsity. 

[71] 

Values are not centered 

around zero, although it 

is closer than the Relu 

towards that. [72] 

 

 

Table 7 introduces popular activation functions, showing their equations, derivatives, shapes, and both 

advantages and disadvantages.  The learning process in a network is composed of millions of mathematical 
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operations, which is a computationally demanding task. Hence, the choice of activation functions and their 

computational and mathematical complexities is an important factor for achieving optimum results. According to 

research, the Rectified Linear Unit is one of the most popular activation functions currently in use due to its higher 

speed of converging. According to research, it has been said to train six times faster than the tanh function[73]. 

Each of the activation functions gives different characteristics to the model; both the tanh and the sigmoid 

functions are much slower to converge when using gradient descent due to their nonlinear saturation regions with 

a very low slope. The activation of the output layer depends on the type of prediction, in regression we can emit 

the final activation or use Relu for only positive output values, but for binary classification problems, the Sigmoid 

function since is used and in the case of multi-class classification, the soft-max activation is used. Finally, the Elu 

function is used in the research as it is an improved version of the high-performing Relu function.   

 

 

4.4. Optimization algorithms  
 

After setting up a neural network, the main objective is to update all the weights and biases in the hidden and 

output layer in a way that increases the prediction accuracy of the model. Initially, all the weights should be set 

randomly and not initialized to zero. Then the weights are updated with the following steps: 

 

1. Input the training data into the network and propagate it to the output layer.  

2. Calculate the error between the predicted value and the ground-truth/real value.  

3. Back propagate the loss through the network to obtain the gradients. 

4. Use the gradients to update the weights of the network.  

 

First, the cost function allows the calculation of the error between the predicted and real value. The mean 

squared error cost function is used for regression problems and is as followed:  

 

 𝐶𝑜𝑠𝑡: 𝐽𝑚𝑠𝑒(𝑦̂, 𝑦) =
1

𝑚
∑(𝑦̂(𝑖) − 𝑦(𝑖))

2
 

𝑚

𝑖=0

 (14) 

 

𝐽𝑚𝑠𝑒(𝑦̂, 𝑦) is the summation of the mean square errors across all training data samples , 𝑤ℎ𝑒𝑟𝑒  𝑦̂(𝑖) is the 

prediction value and 𝑦(𝑖) is the real output, m is the number of training examples. There are different types of 

cost functions depending on the type of output being regression or classification. Regression problems utilize the 

MSE function due to its derivation characteristics for the backpropagation. Classification problems utilize the 

cross-entropy cost function.  

 

𝐽(𝜃)𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝐶𝑜𝑠𝑡: 𝐽𝑚𝑠𝑒(𝑦̂, 𝑦)} (15) 

 

The goal is to minimize the cost function 𝐽(𝜃). 𝜃 represents the weights and biases of the model, where the Cost 

function depends on them. Equation 14 represents the Mean Squared Error (MSE) cost function that is used for 

regression models. The total error calculated is used to measure the performance of the training process at each 

iteration and its derivation is fed back with backward propagation where the parameters (𝜃)s of the model 

representing the weights and biases are updated using gradient descent:  

 

 𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅ ∇𝜃𝑡
𝐽(𝜃𝑡),    (16) 
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In the above Equation, each weight  𝜃𝑡 at training step, t is updated by calculating the partial derivative ∇𝜃𝑡
𝐽(𝜃𝑡) 

of the error function 𝐽(𝜃𝑡) relative to each parameter 𝜃𝑡 in the network using the chain rule.  𝜂  denotes the 

learning rate and determines the speed of gradient descent, where choosing a very big value might cause the 

model not to converge towards the global minimum or too low a value slows down the learning process. By 

iterating with forwarding and backward propagation, the parameters of the model are updated in a way that drives 

the error down until it reaches the required error rate. Then the model can be used for the specified task it is 

designed for.  

 

As mentioned previously, back-propagation is a gradient descent algorithm that updates the parameters of 

the model to decrease the error “Cost Function”. There are many variations to the application of gradient descent, 

with the most prominent version called Adam. To have fast and more efficient convergence towards the global 

minimum in any given network, certain improvements are added to Equation (16), including moving average to 

the updates, decreasing oscillations in the search space, reducing descent time, and computational time resources. 

The following Table 8 shows three of the most popular algorithms in use today[74]:  

 

 

Table 8 Popular optimization algorithms for Neural Networks 

Name Modified gradients Update Rule Parameters 

Momentum 

[75] 

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂. 𝑔𝑡

 
 𝜃𝑡+1 = 𝜃𝑡 − 𝑣𝑡  

𝛾 = 0.9  

𝜂 = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 

RMSprop 

[76] 

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 + (1 − 𝛾)𝑔𝑡
2

 
 𝜃𝑡+1 = 𝜃𝑡 −

𝜂

√𝐸[𝑔2]𝑡 + 𝜖
𝑔𝑡 

𝜂 =  learning rate 

𝛾 = 0.9 

𝜀 = 10−8 

Adaptive 

Moment 

Estimation 

Adam 

[77] 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡  

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

 

 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 , 𝑣̂𝑡 =

𝑣𝑡

1−𝛽2
𝑡

 
   

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣̂𝑡 + 𝜖
𝑚̂𝑡 

𝜂 =  learning rate 

𝛽1 = 0.9 

𝛽2 = 0.999 

𝜀 = 10−8 

 

 

 

where 𝑔𝑡 is the gradient of the objective function relative to the parameter 𝜃𝑖 to be updated at time step 𝑡 where 

𝑔𝑡,𝑖 is represented as[74]: 

 

 𝑔𝑡,𝑖 = ∇𝜃𝑡
𝐽(𝜃𝑡,𝑖) (17) 

 

 𝐸[𝑔2]𝑡 abbreviated as 𝑚𝑡  in Adam, represents the running average at time step 𝑡, which is a function of the 

previous running average 𝛾𝐸[𝑔2]𝑡−1 and the current gradient 𝑔𝑡. 𝛽1 represents the 𝛾 parameter of Momentum, 

while  𝛽2 represents the 𝛾 parameter of RMSprop. As can be seen, Adam is a combination of both RMSprop and 

Momentum, leading to its high performance in practice compared to similar adaptive learning methods[74].  

 

 

 

 

 



26 

 

 

4.5. Performance Metrics  

 

In order to measure the performance of the prediction model, different performance indicators are used. The 

following three equations representing the Mean Absolute Error(MAE), Mean Squared Error(MSE), the R2 error 

and (Mean Percentage Absolute Error) MAPE will be used to evaluate the performance of the neural network 

model[78][79]: 

 

 

 

 

Table 9 Error Metrics for measuring prediction performance 

Metric Type Equation Characteristics 

MAE Scale Dependent 

 

1

𝑚
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑚

𝑖=1

 

 

 

▪ The absolute term avoids 

mutual cancelation 

between positive and 

negative errors. 

▪ Skewness cannot be 

determined 

 

RMSE Scale Dependent 

 

√
1

𝑚
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑚

𝑖=1

 

 

 

▪ Avoids mutual 

cancelation between 

positive and negative 

errors. 

▪ Large errors and outliers 

are penalized more, and 

small errors less. 

MAPE Percentage Based 

 

1

𝑚
∑|

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|

𝑛

𝑡=1

 

 

▪ Dimensionless and can 

be compared across 

different data sets. 

▪ Must be used with 

caution when 𝑦𝑖  is close 

to 0. 

 

R2 Percentage Based 

 

1 − 
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑚
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑚
𝑖=1

 

 

▪ Bound between 0 and 1 

(Higher is better) 

▪ Judges how well the 

model fits the Data. 

 

 

 

 

Where 𝑦𝑖  is the real value for input 𝑖 , 𝑦̂𝑖  is the predicted value, m is the number of training input vectors 

(Observations). 𝑦̅ is the mean of the real values 𝑦𝑖. The Mean Absolute error can clearly indicate the average error 

in relation to the real values.  The MAPE metric is the main performance indicators used to comparing model 

performance across different studies with data having different scales time series regression analysis.  The final 

model performance is compared across all the data splits mentioned using the mean absolute percentage error 

(MAPE), and the root means square error (RMSE) [80]. 
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4.6. Improving generalization and avoiding overfitting/High Variance: 

Dropout, Regularization, and early stopping 

 
Deep neural networks can have a large number of parameters to learn and adapt to the training data, although 

one of the major problems concerned is overfitting the network to the training data where the model becomes 

characterized with high variance, with high performance on the training data and the noise that comes with it, 

while achieving less performance on the validation and test sets[81]. The following techniques are used to 

overcome the challenge of achieving good generalization of the network on data it has never been trained on.   

 

 

 

4.6.1.  Dropout  

Dropout is a technique presented by [82] where it turns off neurons in selected layers with a certain 

probability in order to reduce the overfitting of the model. At each training epoch, each layer turns off 

neurons randomly with a certain probability between 0 and 1. This helps in reducing overfitting and noise 

or outlier overfitting while training the model on the training data. Although, this is not used during 

validation or testing data. Dropout is applied to each layer separately and does not need to be applied to 

every layer. The percentages seen in Figure 16 represent the assigned dropout probability each neuron 

has in a specific layer. The algorithm is presented in the following figure:  

 

 
Figure 16  Dropout 

 

4.6.2.  Ridge Regression (𝒍𝟐 Regularization) and Lasso Regression (𝒍𝟏 Regularization) 

 

Ridge Regression (𝑙2 Regularization) and Lasso Regression (𝑙1 Regularization) are referred to as 

shrinkage methods in statistical theory [81] and are represented as follows:  

 

 𝐽(𝜃) =  
1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))2𝑚

𝑖=1  + 
𝜆

𝑚
∑ |𝜃| 

  (18) 

 

 
𝐽(𝜃) =  

1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))2𝑚

𝑖=1  + 
𝜆

𝑚
∑ 𝜃2 

  

 
(19) 

 ∑ |𝜃| 
  is the sum of all the absolute weights in the neural network and equation 18 represents the ridge 
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regression, while equation 19 represents the Lasso regression with the difference of taking the square of 

every weight then summing them. 𝜆 is complexity or hyper parameter that controls the amount of penalty 

for large coefficients in the model. These regressions add a value to the original 𝐽(𝜃) in equation (5) that 

is used to reduce the variance problem of the model overfitting to the training data, the noise and outliers 

that can come with it.  

 

 

 

4.6.3.  Early stopping: 

 

The Back propagation algorithm is an optimization algorithm that searches for the best weights and 

biases within every neuron to achieve the least error possible, although, with every iteration of the back 

propagation, two main scenarios can occur: (1) on a macro level, the training can start to overfit the 

training data and diverge on the validation/development data.  (2) on a micro level, the error oscillates a 

lot, even in regions with the lowest error. Hence, early stopping is a technique used to stop the training of 

the neural network at the best training iteration, avoiding the region of divergence between validation and 

training errors as well as finding the least error iteration/epoch that achieves the best generalization 

possible depicted by the validation data set[83]. Figure 17 illustrates early stopping on a macro-level 

perspective, while the latter will be discussed later.  

 

 
Figure 17 Early Stopping 

 

4.7. Feature Selection Methodologies 
 
 

Feature selection is one of the essential steps to building a high-performing machine learning predictor, as 

well as selected and designed features improves the performance of the prediction algorithm,  reduces its training 

and run time, and makes it more cost-effective [84]. Although, there are many advanced techniques and methods 

used for selecting the best features for a machine learning algorithm, this subsection introduces the methods used 

in this research.  Machine learning algorithms are bound by the data available that correlates to the target variable 

to be predicted; hence, the best subset should be selected out of the potential available variables. 
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4.7.1. Physical relation and expert domain knowledge 

 

A deep understanding of the physical relation between variables and deep knowledge in the field 

being studied, can affirm the need to use a certain variable in the prediction model. For example, in energy 

demand, meteorological data has been found to be of most importance as independent variables where 

they carry essential information for the predictions related to energy demand. This is due to their direct 

physical and phycological impact on energy consumption behavior[85]. 

 

 

4.7.2. Correlation metrics and the Pearson Correlation Coefficient  

 

Many statistical methods are used to determine the correlation and covariance between two variables. 

These methods do not explicitly measure or claim the causal relationship between variables but shed 

insights on the direction of change of one variable in relation to the other. Correlation measures the 

monotonic relation between two variables; this relationship describes whether the increase in one variable 

is accompanied by an increase or decrease in the other, where there is a relationship governing the change 

in magnitude of both variables. A positive correlation means that when one variable has high values, the 

other tends to also have high values. A negative correlation is one where a higher value in one variable is 

associated with lower values in the other. The Pearson Correlation coefficient is a common and widely 

used index that measures the linear correlation between two continuous random variables[86]. Assuming 

𝑌 is the predicted continues variable and 𝑋𝑖 is the predictor variable 𝑖, the Pearson correlation coefficient 

is defined as[84]:  

 ℛ(𝑖) =
cov(𝑋𝑖 , 𝑌)

√var (𝑋𝑖)var (𝑌)
 (20) 

 

Where 𝑐𝑜𝑣 represents the covariance between the two variables and 𝑣𝑎𝑟 represents the variance of each 

variable. The estimate of ℛ(𝑖) is given by the following equation[84]:  

 

 
𝑅(𝑖) =

∑  𝑚
𝑘=1 (𝑥𝑘,𝑖 − 𝑥𝑖)(𝑦𝑘 − 𝑦̅)

√∑  𝑚
𝑘=1 (𝑥𝑘,𝑖 − 𝑥𝑖)

2
∑  𝑚

𝑘=1 (𝑦𝑘 − 𝑦̅)2

 
(21) 

 

Where 𝑅(𝑖) 𝑖𝑠 𝑡ℎ𝑒 Pearson Correlation coefficient between the predicted variable 𝑦 and the predictor 

variable 𝑥𝑖 . 𝑚  represents the number of samples, 𝑥𝑖  and 𝑦̅  represent the mean of the values of the 

variable 𝑥𝑖 and target variable 𝑦 respectively. The difference between the Person correlation coefficient 

and covariance is that it is a dimensionless measure of covariance bound by the range of [-1,1], where 1 

represents the highest positive linear correlation and -1 the highest negative linear correlation. On the 

other hand, covariance depends on the measurement scale of the selected variables and its value cannot 

be easily interpreted in a relative sense to rank different features[84].  

 

4.7.3. Sensitivity analysis 

 

Machine Learning methods are black-box methods, where their performance highly depends on the 

available data and variables that correlate to the target variable. Correlation metrics, physical and logical 

inferences on the relationship between different variables might not fully justify the inclusion of a 

particular feature, where correlation does not imply causation [79], and the inclusion of parameters that 

are in themselves corelated can cause causation multicollinearity, which can lead to redundancy. Perfectly 
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corelated variables can be redundant where they offer no additional information to the model, although a 

very high correlation can cause variable complementarity. Adding to the previous points, a variable that 

is insignificant on its own can lead to increasing the prediction performance when added to other 

variables. The same is said when two variables are insignificant on their own can be useful together[84]. 

Hence, taking a different subset of the target features in question and training multiple models then 

evaluating the effect of adding each feature is a method that can be used to discover useful and redundant 

features. This method is considered a brute force method, where if there are 𝑥 number of variables there 

are 2𝑥 different combinations. For the case of this research, we test different feature combinations as 

shown in the following Figure 18.  

 

 
Figure 18 Sensitivity Analysis for feature Selection 
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Chapter 5: Day-ahead Short-term Load 

forecasting Results  
5.1. Jordan’s electrical demand data analysis 
 

In this study, the 4-years hourly electrical demand of NEPCO between 2016 and 2019 is used to train the 

deep learning model to predict the day-ahead hourly STLF for the Jordanian power grid, which is shown in Figure 

19. It can be observed that, the highest peaks out of all the years happened in 2019, reaching 3380 MW in winter. 

It is due to the increase in urbanization, growth in population, as well as the rise in penetration of different types 

of electrical appliances to households, while for the same year, the lowest demand was recorded at 1195 MW in 

spring.   

 

Figure 19 Yearly variation in Jordan’s Electrical Demand 

  

Figure 20 Weekly variation electrical demand, 2016-2019 
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The electrical demand is a highly complex time series that is a function of human daily and seasonal behaviors 

and weather conditions, making it heterogeneous and uncertain. In Figure 20, the weekly variation of the electrical 

demand is represented by the probability density distribution for different days of the week. An apparent increase 

in peak demand occurs from Saturday through Wednesday, then declining towards Friday, where Friday and 

Saturday represent the weekend holidays. As previously shown in Figure 5, the daily demand is also affected by 

the hour of the day, where the peak demand occurred for that specific day at 6 PM, while the lowest occurred at 

4 AM. Hence, time-series features such as an hour of the day, day of the week, as well the day of the year carry 

essential information for the STLF[87]. In Figure 21, and for each quarter of the year (Q1-Q4), where Q1 

represents the first 3 months starting from January, the variation of hourly demand with the temperature change 

is shown. Electrical demand peaks at winter (end of Q4 – Q1) and summer (end of Q2 – Q3) temperatures, as 

consumers are more likely to use space heating and cooling. On days characterized with thermal comfort between 

20 and 30 ℃, the average demand is lower. The curves on top and to the right of the figure show the probability 

density distribution for demand and temperatures per quarter. The third quarter depicting two thirds of the summer 

season had the highest demands on average. 

 

 
Figure 21 Demand vs. Morning Peak Load Temperatures, 2016-2019 

 

 

Finally, the autocorrelation analysis represents the correlation of the demand at a certain hour to its lagged 

values shown in Figure 22, indicating which previous hours of the demand hold the highest correlation to be used 

as predictive features in STLF[23][60].  
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Figure 22 Autocorrelation of the electrical time-series signal with previous hours 

 

    Lagged demands at (-1, -24, -168, -48) hours showed the highest correlation, respectively, representing 

the demand at the same hour in the previous two days in the current week and the same day in the prior week.  

Table 10 illustrates the exogenous features related to demand at the hour to be predicted. The endogenous features 

related to the demand at previous hours of the week are given in Table 11.  

 

 

Table 10 Exogenous input features related to demand at the hour to be predicted 

 

No. Exogenous Input Features Range  

1 Morning Peak-Load Time Temperature ℃ 4 - 42 

2 Evening Peak-Load Time Temperature ℃ 2 - 37 

3 Minimum Load-Time Temperature ℃ -1 - 34 

4 Hour of the day  1 - 24 

5 Day of the Year  1 - 366 

6 Week of the Year 1- 53 

7 Normal Day  [0,1] 

8 National Holiday  [0,1] 

9 Ramadan  [0,1] 

10 Sunday  [0,1] 

. . [0,1] 

16 Saturday  [0,1] 
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Table 11 Endogenous input features related to the demand at previous hours of the week 

 

No. Endogenous Input Features Range  

1 lagged Demand (-24 hours) 1195 - 3380 

2 lagged Demand (-25 hours) 1195 - 3380 

3 lagged Demand (-26 hours) 1195 - 3380 

4 lagged Demand (-48 hours) 1195 - 3380 

5 lagged Demand (-49hours) 1195 - 3380 

6 lagged Demand (-50 hours) 1195 - 3380 

7 lagged Demand (-168 hours) 1195 - 3380 

8 lagged Demand (-169 hours) 1195 - 3380 

9 lagged Demand (-170 hours) 1195 - 3380 

10 lagged Demand (-192 hours) 1195 - 3380 

11 lagged Demand (-193hours) 1195 - 3380 

12 lagged Demand (-194hours) 1195 - 3380 

 

 

In the above tables, the first three features are assumed to be collected from day-ahead weather predictions 

at the times of the expected morning, evening, and minimum peak times of the day where the demand is to be 

predicted.  Features 4 to 16 represent the time series features, specifying the hour of the day, day of the week, day 

of the year, week of the year, and whether the day is a national holiday, the month of Ramadan, or a typical 

day[36], [87]. The lagged demand features were selected according to the autocorrelation analysis, where [36] 

considered the previous two days only, which can make a problem when weekends are involved as discussed by 

[87], hence, the same day and its previous day from the last week were used as inputs to the model.  

 

 

 

5.2. Deep learning model’s training and optimization results  
 

The training and tunning process for the proposed deep neural network model used in this study depicted in 

Figure 24, is used to predict the day-ahead 24-hour demands. The model predicts the day-ahead demand at a 

specific hour ℎ starting from the end of the previous day; the model is run 24 times to predict the next day’s hourly 

demand hour by hour. The 4-year hourly demand dataset was split into 90% training data to train the model, 5% 

validation data to tune the hyperparameters and select the best architecture, and 5% testing data coupled with the 

last month of 2019 used as a final test of the model’s generalization performance. Achieving high prediction 

accuracy is essential for the DR model and is achieved through careful feature selection coupled with selecting 

an optimal neural network architecture. 
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Figure 23 Tuning and Training of the Day-ahead Deep Learning model for demand prediction at hour h 

 

Before the features are input into the model, the non-categorical features were normalized using Z-Scoring:  

 

 

𝑧𝑛𝑜𝑟𝑚
(𝑖)

=
𝑧(𝑖) − 𝜇

√𝜎2 + 𝜀
 

 

(16) 

Where 𝑧𝑛𝑜𝑟𝑚
(𝑖)

 is the normalized data sample for one feature, 𝑧(𝑖) is the sample point to be normalized, 𝜇 is the 

mean of that feature samples, 𝜎2 is the variance of the feature samples, and 𝜀 is used to avoid division by zero. 

Normalizing Data accelerates the Gradient descent learning rate, where the different scales of features can make 

certain weights and parameters update faster than others, making the gradient descent slower to converge to lower 

errors. An important notice is that for each feature set, the mean and variance are computed from the training data 

and are also used to normalize all the dataset splits. 

 

A sensitivity analysis was used to select the final model’s hidden layers’ (referred to as HL) configuration 

shown in Table 12:  

 

Table 12 Final Deep Neural Network Architecture 

Layers HL-1 HL-2 HL-3 HL-4 Output-L 

#Neurons 1024 512 256 128 1 

Activation elu elu elu elu - 

Dropout Probability 0.1 0.1 0 0 - 

𝒍𝟐 𝒑𝒂𝒓𝒂𝒎𝒂𝒕𝒆𝒓 0.18 0.18 0.18 0.18 - 
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The architecture starts with a high number of neurons, then descends to lower numbers, which aligns with 

recent works such as [85], and the elu activation function showed slightly higher performance than the relu 

activation function. Dropouts were only applied to the first two layers, which showed better performance in 

combination with 𝑙2 regularization. Table 13 shows the final performance results for the training, validation, and 

testing data. 

 

Table 13 Final Deep learning model results on Training, Validation and Testing Data 

Data  MAPE% RMSE R2 

Training 1.205% 31.17 0.9932 

Validation 1.365% 38.39 0.9897 

Testing 1.411% 43.18 0.9871 

 

 

The MAPE error for the test data achieved a 1.411% error, just above the validation and training error; hence, 

the model achieves good generalization and high accuracy. Finally, the predictions of the last month of 2019, 

which is the final test of the model as it was not used to train the model, similar to the validation and testing data, 

are shown in Figure 24. The final model prediction results achieved a MAPE error just above the testing data at 

2.03% since it is the hardest to predict at the end of the training period. This shows the importance of the 

continuous training of the model every day when new data is acquired to sustain high accuracy and generalization.  

Most of the high errors depicted by the lower part of Figure 24 occur from 8 AM to 12 PM. As will be discussed 

later, improved prediction models should focus on this period of the day for improvement.  

 

Figure 24 December-2019 prediction results 

 

 

 

 

To better investigate the occurrence of high errors in the proposed prediction in Figure 24, Figure 25 depicts 

the hourly Absolute Percentage Error for each day in December 2019, where each day has been labeled according 
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to its weather description as observed in NEPCO’s data. First, the relatively high errors can occur between 8:00 

and 17:00, with the largest errors being mainly in the range of 10:00 to 13:00 around noon time. High prediction 

errors can occur for many reasons that cause an abnormal change in consumer behavior or affect the production 

of PV energy on distribution levels. It can be observed in the figure that rainy days such as the 6th,8th, and 9th of 

December had very high errors during noon, this can be related to more people staying in the door as well as a 

reduction in distribution and consumer level PV production that the grid operator sees as a sudden increase in 

electrical demand as was observed in Figure 13. Cloudy days, depending on the area of cloud coverage in Jordan 

and the time of cloud coverage, can also disrupt PV generation, as can be seen in both the 2nd and 10th of December 

from 11:00 to 17:00. On the 25th, the Christmas holidays could be a critical factor for the change in morning load 

between 8:00 and 10:00, causing higher errors in the period. Finally, regarding Sunday, the 22nd of December, a 

sudden change in demand was traced for the 4 Sundays from the 1st to the 22nd, for example, at 11:00 going from 

1876 MW, 2519 MW, 2354 MW to 2118 MW on the 22nd. The first major increase in demand was due to both 

the rainy day observed and a large decrease in temperature, dropping from a 21°C morning on the temperature on 

the 1st to a 12°C on the 8th, then the temperature slowly rose to 13 °C then 18 °C at the 22nd. Since the model relies 

on the demand from the same day at the previous week as one of its features, these sudden changes in weather 

conditions can have a significant impact on any specific day that has a large change in demand, especially at 

certain periods, and especially that Sunday depicts the starting day of the working day in Jordan.  

 

 
Figure 25 Absolute percentage error of the forecasted results in December 2019 and related weather 

conditions. 
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Chapter 6: PEMD analysis results and the 

dispatching scenario  
 

6.1. Jordan’s residential sector PEMD analysis  
 

Pre-implementation of DR requires a well-established estimation of the PEMD to analyze the impact of price 

ranges on demand. The short-term price elasticity is the best estimation for self-elasticity (𝜀ℎ
 ) as it shows the 

negative relationship between price and demand change in short periods. Based on an analysis of residential tariffs 

for the periods between 1984 to 2014, the short-term price elasticity of electrical demand for the residential sector 

in Jordan is estimated at -0.0575[59].  

 

Although, since price responsiveness of demand varies at different hours of the day, two scenarios are 

assumed: (1) 𝜀ℎ 
 is assumed constant for every hour, (2) 𝜀ℎ

  is assumed to be double in peak periods. Hourly cross-

elasticity represents the amount of energy shifted from one hour to other hours of the day, both backwards and 

forwards in time. To estimate the amount of potential shiftable energy in peak load hours and its time horizon, a 

detailed analysis of the different loads impacting DR and their penetration in the residential sector is conducted, 

which is represented in Table 14. 

 

Table 14 Power consumption and Penetration rates of different electrical appliances in Jordan’s Residential 

Sector 

Appliance 
Penetration 

Rate (%)1 Watts4 H/Day 

Vacuum cleaner 68% 1200 0.5 

 Dishwasher 7% 1800 1 

Washing Machine 97%2 1800 1.5 

Water heater 

(Electrical/ 

Gas) 

79% * 0.52,3 4000 3 

AC 32% 1800 12 

Freezer 16% 200 12 

Refrigerator 98% 200 12 

Microwave 54% 1500 0.5 

Laptop/PC 31% 120 3 

TV 98% 200 3 

Lighting 100% 420 6 
1. Jordan’s department of statistics survey in 2017 [88] 

2. [89] 
3. The water heating penetration is assumed at 50% for the electrical-based and 50% for the gas-fired  
4. JICA’s report on the electricity sector master plan [52] 

 

 

 

The data in Table 14 was used to estimate the normalized weight of each appliance’s energy consumption 

relative to other appliances, which is shown in Figure 26.  The figure depicts an estimation of the weight of each 

appliance’s share of the residential electrical demand for the loads discussed in this study, where it is more 
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probable that it holds in the evening load period when consumers return from work and need to use both water 

and space heating.  

 

 
Figure 26 Daily Load Weights of Electrical Appliances in Jordan's Residential Sector 

 

Residential loads can be classified into different types according to their flexibility and DR characteristics: 

Thermostatically controlled loads (TCLs), Deferrable Loads, Uninterruptible Loads [90]. TCLs are highly 

correlated to temperature and environmental factors, where due to their thermal storage properties, their demand 

can be more flexible with a lower impact on consumer comfort.  Deferrable Loads refer to appliances that are 

flexible to use and can also be shifted with low impact on consumer comfort. Finally, uninterruptible Loads refer 

to the appliances that require continuous energy demand while being used and are highly correlated to consumer 

comforts where they usually have little DR potential. Both TCLs and Deferrable Loads are estimated to represent 

82.9% of the residential sector which amounts to a significant potential for DR in Jordan’s residential sector. 

Water heating and deferrable appliances can be easily shifted in peak demand periods resulting in peak shaving. 

According to the previous discussion, cross-elasticity is estimated under two scenarios related to the amount of 

energy re-allocated in peak time: 

  

1. A lossless-case scenario: Reduced energy at a certain hour is re-allocated into other hours of the day without 

a loss in total energy consumption. Hence, the summation of all cross elasticities in every column in the 

PEMD is equal in magnitude to the self-elasticity at that hour.  

 

2. A 75% re-allocation scenario: 75% of the reduced demand is re-allocated to other hours, and 25% is not 

used by the consumers, such as lighting, TV, or AC usage that users simply do not use again. Therefore, the 

summation of all cross elasticities in every column in the PEMD is equal in magnitude to 75% of the self-

elasticity at every hour. 
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6.2. Peak period DR policy impact on PEMD estimation 
 

The proposed DR policy in this study is implemented by changing the peak-period prices only to reduce the 

peak-load according to operational and security goals of the GO, which has a direct impact on the estimation of 

the DR behavior of the residential sector. The period of DR is assumed to start one hour before (4 -5) PM and 

after (8-9) PM the announced peak periods that were discussed in Table 6 for the winter season are constant for 

the whole period. The PEMD under this price policy in the winter peak-time is depicted in Figure 27, where it 

incentivizes consumers to shift their energy consumption outside of the peak demand period only due to the 

constant peak period price. Since the prices only change in the peak period, the areas on the left and right of the 

peak period are ignored and were considered zero based on the policy proposed. 

 

Figure 27 Winter Peak Time - PEMD under the proposed DR policy 

 

Consumers are inclined to shift their demand to the closest hours outside of the peak period [91], as depicted 

in Figure 27. The time-horizon (𝑇𝑏: backward time horizon and 𝑇𝑓: forward time horizon) of the demand re-

allocation depends on the type of appliances shifted. In the case that most of the appliances shifted are deferrable 

loads or water heating, it is assumed that the time-horizon of shifting is 4 hours closest to the hour under peak 

pricing, where the cross-elasticates have the same value as reported in Table 15. It is also assumed that, in the last 

hour of the peak period, a part of their demand is shifted to the next day after 24:00, which is not considered in 

the current PEMD models. If more AC usage is shifted, the weight of the cross-elasticity of the peak hour period 

is doubled for the closest 2 hours, as represented in Table 16.   

 

Table 15 Base self-elasticity, lossless PEMD with no AC shifting Scenario 

Time* 16:00 17:00 18:00 19:00 20:00 

12:00 +0.0144 0  0 0 0 

13:00 +0.0144 +0.0144 0 0 0 

14:00 +0.0144 +0.0144 +0.0144 0 0 

15:00 +0.0144 +0.0144 +0.0144 +0.0144 0 

16:00 -0.0575 0 0 0 0 

17:00 0 -0.0575 0 0 0 

18:00 0 0 -0.0575 0 0 

19:00 0 0 0 -0.0575 0 

20:00 0 0 0 0 -0.0575 

21:00 0 +0.0144 +0.0144 +0.0144 +0.0144 

22:00 0 0 +0.0144 +0.0144 +0.0144 

23:00 0 0 0 +0.0144 +0.0144 

 

             *at 23:00 for example, it indicates the period of (23:00 – 24:00) 
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Table 16 Base self-elasticity, lossless PEMD with AC shifting Scenario 

 

Time 16:00 17:00 18:00 19:00 20:00 

12:00 +0.0096 0 0 0 0 

13:00 +0.0096 +0.0096 0 0 0 

14:00 +0.0192 +0.0192 +0.0096 0 0 

15:00 +0.0192 +0.0192 +0.0192 +0.0096 0 

16:00 -0.0575 0 0 0 0 

17:00 0 -0.0575 0 0 0 

18:00 0 0 -0.0575 0 0 

19:00 0 0 0 -0.0575 0 

20:00 0 0 0 0 -0.0575 

21:00 0 +0.0096 +0.0192 +0.0192 +0.0192 

22:00 0 0 +0.0096 +0.0192 +0.0192 

23:00 0 0 0 +0.0096 +0.0096 

 

Table 17 shows the structure of the finalized PEMD in this study. Cases 1 to 4 represent the base self-

elasticity which equals the short-term self-elasticity for the residential sector of Jordan, while Case 5 to 8 assume 

that the peak period will have double the elasticity. Cases [1,2,5,6] represent a lossless PEMD, where the 

summation of the cross-elasticities is equal to the cross elasticity in magnitude, while their counterparts take the 

75% case scenario mentioned previously.  Finally, cases [3,4,7,8] consider more AC usage participated in DR, 

where the second level of cross elasticity (L2) with double the weights of (L1) is used, as was shown in Table 15 

and Table 16.   

 

Table 17 Finalized PEMD 

Case Scenarios Self-Elasticity Cross Elasticity—L1 Cross Elasticity—L2 

C1 

−0.0575 

−(−0.0575/4) - 

C2 −(−0.0575/6) −2×(−0.0575/6) 

C3 −(0.75×(−0.0575))/4 - 

C4 −(0.75×(−0.0575))/6 −2×(0.75×(−0.0575))/6) 

C5 

−0.115 

−(−0.115/4) - 

C6 −(−0.115/6) −2×(−0.115/6) 

C7 −(0.75×(−0.115))/4 - 

C8 −(0.75×(−0.115))/6 −2×(0.75×(−0.115))/6) 

 

 

 

 

 

6.3. Dispatching scenario and prediction performance  
 

To simulate a real dispatch case scenario, the unit commitment and dispatched power plants for a day in 

December- 2019 were acquired coupled with the expected demands for that day as predicted by NEPCO. The 

detailed information of the dispatched power plants is given in Table 18. All units for that day operated with 

combined cycles with their real capacities shown. The available power from Egypt is assumed at 150 MW for the 

whole day with priority above IPP4 and Risha’s power at maximum capacity with its cost not considered, being 
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based on natural gas extracted from Jordan. The real hourly PV and wind energy from renewable power plants 

are assumed to be the predicted values and are subtracted from the demand, then the table is used to find the 

cheapest combination.  

 

Table 18 Power Plant Dispatched for the Cases-study in December 2019 

Unit Name Cost (JD/MW) Min. Demand (MW) 
Max. Demand 

(MW) 

1 Risha 0 33 33 

2 AES CC 59.85 210 410 

3 ACWA CC 60.09 210 360 

4 SAMRA 4 CC 61.06 127.5 220 

5 SAMRA 3 CC 61.06 192.5 420 

6 SAMRA 1 CC 61.06 210 310 

7 QPC CC 64.89 210 424 

8 Wind 72.79 0 - 

9 PV 79.94 0 - 

10 Egypt 52.79 0 150 

11 IPP4 121.17 0 240 

12 IPP3 231.04 0 570 

 

Figure 28 shows the real and predicted values of electricity Sunday, 8th of December 2019, as well as the PV 

and wind generation, where Sunday represents the start of the working week in Jordan.  The proposed model’s 

prediction achieved a MAPE of 3.59% and is compared to NEPCO’s prediction, which performed worse. One 

reason is that NEPCO’s prediction is usually provided before 4 PM on the previous day, while our model achieves 

the prediction of the whole day at the end of the previous day. Nevertheless, the proposed model achieved higher 

results throughout the period.  It is to be noted that, hour 0:00 indicates the average demand from 0:00 to 1:00.  

 

 

Figure 28 Selected case study day in December 2019 
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Chapter 7: Final model’s results   
 

 

7.1. Day-ahead Demand Response model for the selected case study 

Scenarios  
 

The proposed Day-ahead DR system for the residential sector’s demand is shown in Figure 29, which was 

applied to a selected day in December 2019. The contribution of JEPCO, IDECO, and EDCO in providing the 

total residential electricity demand is considered about 32.4%, 5.08%, and 9.98%, respectively. This is calculated 

by multiplying the peak power of each distribution company by the percentage of residential and commercial 

energy consumption for each company. The estimated demand is also used to calculate the amount of power 

purchased from each power plant, after deducting the usage of the renewable power. Finally, after the peak bulk 

prices are selected for each distribution company, the model is applied to each PEMD case scenario to estimate 

the potential generation cost savings, peak demand reduction, and load factor improvements.   

 

 

 

Figure 29 Applied Day-ahead DR Model for a selected day 
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7.2. Sunday 8-12-2019 – Case study Analysis 
 

The Day-ahead DR model was applied to all the PEMD case scenarios discussed in Table 17, assuming the 

maximum peak prices 𝑠𝑝𝑝𝑐,ℎ,𝑀𝑎𝑥  for the period of each distribution company to be set at 200%, 250%, and 300% 

of their initial values. The three different price scenarios were applied to the profit maximization model presented 

in Equation 1 by maximizing the daily profit from the three distribution companies without considering the 

monthly capacity charge. Figure 30 shows the impact of applying the proposed DR model on Sunday, 8th of 

December 2019, considering all case scenarios and the dispatch model depicted in section 6.3. The profit 

maximization model always selects the maximum peak price for the given price scenarios. 

 

 

Figure 30 Hourly Demand impact of DR-model under different case scenarios 

 

It can be observed that, the PEMD cases scenarios [C1 – C4] show a lower peak drop in the peak period due 

to having lower price elasticity in comparison to [C5 – C8], indicating the higher the peak period price, the higher 

the peak drops in the peak period. The periods after and before the peak period, especially from 2-4 PM and 9-11 

PM, are extremely important. This is because the demand removed from the peak period is rescheduled towards 

them. Therefore, the new peaks might form, especially in case scenarios with high self-elasticities [C5 – C8], 

indicating the more demand is reduced in the peak period, the higher the new peaks’ demand is. C6 represents the 

worst-case scenario, especially at higher peak prices, representing a lossless-PEMD with double the weight for 

the closest two hours outside the peak period. C2 represents the highest new peak formed among the cases [C1 – 

C4], although since it has half the self-elasticity of C6, the new peak was not as severe.  

 

There is a clear trade-off between the demand reduced from the peak period and newly formed peaks. Figure 

31 shows the peak reduction percentage for the whole day for each case scenario. C6 shows an increase in the 

peak by -1.46% at 300% peak price. It is noted that, in the case scenarios with low self-elasticity [C1- C4], a price 

increase leads to a steady decrease in the day’s peak demand. In contrast, in the cases scenarios with high self-

elasticity [C5-C8], higher prices can lead to a lower day’s peak reduction due to the newly formed peaks. More 

than 5%-day peak reduction can be achieved in most cases except for C2 and C6, which are the worst cases among 

all case scenarios. C6 was the only scenario to show an increase in peak demand at 300% peak price, which is due 

to two main reasons: first, C6 depicts the high self-elasticity scenario where consumers are highly responsive to 

the price change, leading to more demand being shifted to hours outside of the peak period. Secondly, C6 depicts 

the scenario with both the lossless case where all demand removed from any hour will be allocated to other hours 
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and the case where the weight of demand shifted to the closest two hours is doubled. Hence, the higher the price 

increase, the more demand is re-allocated with a higher concentration on the hours outside the peak period being 

15:00 and 21:00, as seen in Figure 19. Other cases such as C5 had a slightly less bad case at 300% peak prick as 

there was an even redistribution of demand reallocated to the surround-ing 4 hours of the peak period, making the 

newly formed peak less than C6, while in C8, there was 25% less demand shifted, making the new peaks also less 

than C6. Alt-hough the peak price is low enough in high elasticity scenarios, even with more de-mand shifted to 

closer hours, a high peak reduction can still be achieved.   

 

Figure 31 Day Peak Demand Reduction% 

 

The load factor is calculated by dividing the mean demand for the whole day by the maximum demand. Figure 

32 represents the comparison between the load factor for each scenario with the original demand. The results 

show that, the load factor can be improved around 5%, by setting high prices in low self-elasticity cases and lower 

prices in high self-elasticity cases. 

 

Figure 32 Load Factor analysis 

 

The main objective of the DR program is to reduce energy consumption from costly peak power suppliers. Figure 

33 shows the amount of saving in electricity usage from IPP3, which is the most expensive power plant, where 

both cases C8 and C7 achieved the highest savings, especially at 250% peak pricing. It is also notable that, the 
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worst-case scenario (C6) at 300% peak pricing also achieved savings, which is mainly because the new high peak 

formed at 9 PM has a smaller width (time horizon) than the original peak and drops more sharply, whereas, for 

the peak formed at 3 PM, PV power was available. This shows the importance of shifting demands towards periods 

where renewable energy is available, where in this case, even if the peak demand increased, the overall demand 

from IPP3 can still be reduced. Cases [C3, C4, C7, C8] achieved better savings in both self-elasticity scenarios, 

since 25% of the demand reduced at each hour in the peak period is removed from the grid.  

 

Figure 33 Savings in electricity purchased from supplier IPP3 

 

 

Figure 34 shows the energy cost savings in all scenarios. Energy cost-saving doesn't follow the same pattern as 

energy saving because the decrease in electricity purchased from IPP3 causes an increase in IPP4 power usage in 

hours, where the demand rises from 2 PM to 4 PM and 9 PM to 11 PM. The best- and worst-case scenarios in 

cost-saving are C7 at 300% peak and C2 at 250%, with the detailed results of the peak reduction, load factor, and 

cost-saving for each case scenario are reported in Table 19, and 20 and the best results based on peak prices for 

each case are highlighted in green. 

 

 

Figure 34 Cost Saving 
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Table 19 Cases [C1 - C4] Results 

Case C1 C2 C3 C4 

Peak Price 200% 250% 300% 200% 250% 300% 200% 250% 300% 200% 250% 300% 

Peak 

Reduction (%) 
2.729 4.093 5.458 2.729 4.093 4.582 2.729 4.093 5.458 2.729 4.093 5.458 

Load Factor 0.780 0.791 0.802 0.780 0.791 0.795 0.779 0.789 0.799 0.779 0.789 0.799 

Cost Saving 

($/day) 
44323 63726 63586 38517 53856 52213 63264 90487 105859 56801 87448 95989 

 

Table 20 Cases [C5-C8] Results 

Case C5 C6 C7 C8 

Peak Price 200% 250% 300% 200% 250% 300% 200% 250% 300% 200% 250% 300% 

Peak 

Reduction (%) 
5.458 2.880 0.266 4.582 1.511 -1.456 5.458 4.841 2.880 5.458 3.814 1.511 

Load Factor 0.802 0.781 0.760 0.795 0.770 0.747 0.799 0.793 0.775 0.799 0.784 0.764 

Cost Saving 

($/day) 
63586 83397 68514 52213 66149 33376 105859 146619 154505 95989 130769 137257 

 
 

The results revealed that, in the case scenarios with base self-elasticity, the best improvement on all indicators 

could be achieved by increasing the prices, especially in C3 and C4, where due to the low-price elasticity in the 

peak time, newer high peaks after and before the peak period were not formed, as less energy was removed from 

the peak period. In these cases, peak demand reduction ranged from 4.582% to 5.458%, load factor rose to (0.780 

– 0.802), and cost savings ranged from 53,856 $ to 105,859 $ per day. The higher the peak period price elasticity, 

the higher demand shifts from the peak period caused newer peaks to form at high energy prices.   

 

The highest energy cost reductions do not align with the other indicators, ranging from 66,149$ to 154,505 

$. This indicates that the prices should be set based on the priority of the GO, whether direct profit in terms of 

cost-saving has higher priority or indirect profits by peak reduction and load factor improvement that increase 

operational performance. The power plant shares for the C7 having the best cost-saving at 300% peak price can 

be seen in Figure 35, where the share of power purchased from IPP3 was reduced from 1.49% to 0.68%. 

 

Figure 35 Power plant shares for the Case of C7-300% before and after DR 
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7.3. Days with the highest demand case study  
 

In order to obtain a more comprehensible result on the effectiveness of the proposed DR model, 3 more days 

with the highest demand from December in 2019 were selected. Friday the 27th and Saturday the 28th have been 

selected to represent the weekends with the highest demand through December, while Sunday the 29th had the 

highest demand from the weekdays, as shown in Figure 36 alongside the previously discussed case in the previous 

section. The detailed results for each day are discussed in the following subsections.  

 

 
Figure 36 3 Extra Selected days within December 2019 

 

 

7.3.1. Friday (27-12-2019)  

 

Friday’s demand is the most unique from the four selected case study days, where there exist two peaks, 

2910 MW at 11 AM and 2980 MW at 5 PM, depicting a unique behavior at the start of the weekend holiday 

in Jordan as depicted in Figure 37, with a prediction performance of 1.84% MAPE Error. The results for this 

day are illustrated in Figures 38 to 40. 

 

 

                      Figure 37 Friday (27-12-2019) prediction performance 
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Figure 38 DR-model output under different case scenarios (Friday-27th) 

 

 

 
Figure 39 Peak Reduction (Friday - 27th) 

 

 
Figure 40 Saving in Purchased Energy (Friday - 27th) 
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7.3.2. Saturday (28-12-2019)  

 
Saturday is also another weekend, although it only has one 3240 MW peak at 5 PM and is closer in 

shape to the weekdays with the difference of noticeably higher demands from the period of 9 AM to 5 PM 

as can be seen in Figure 41. The prediction model achieved a MAPE error of 2.04% and the results for this 

case study are depicted by 42 to 44.  

 

 

 

Figure 41 Saturday (28-12-2019) prediction performance 

 

 

 

Figure 42 DR-model output under different case scenarios (Saturday -28th) 
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Figure 43 Peak Reduction (Saturday - 28th) 

 

 
Figure 44 Saving in Purchased Energy (Saturday - 28th) 

 

 
7.3.3. Sunday (29-12-2019) 

 

Finally, the last Sunday of 2019 showing the highest demand of the month was used in this analysis. 

The prediction model achieved a MAPE of 1.68% performance and its demand reaches 3240 MW at peak 

time, as shown in Figure 45. The results for this day are shown in Figures 46 to 48.  
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Figure 45 Sunday (29-12-2019) prediction performance 

 

 

Figure 46  DR-model output under different case scenarios (Sunday -29th) 

 

 
Figure 47 Peak Reduction (Sunday - 29th) 
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Figure 48 Saving in Purchased Energy (Sunday - 29th) 

 

 

 

7.4. Case Studies Discussion  
 

The results of each of the four presented days can be seen in Table 21, showing the best and lowest results 

in terms of Peak Reduction, Load factor, and Cost Saving.  

 

 

Table 21 Final Results of the DR model on various days 

Day  
Best Results Lowest Results  

Peak Reduction (%) Load Factor Cost Saving ($/day) Peak Reduction (%) Load Factor Cost Saving ($/day) 

Sunday - 8 5.458 0.802 154505 4.582 0.795 53856 

Friday - 27 3.839 0.816 67951 0.642 0.792 25767 

Saturday - 28 5.458 0.799 196245 4.217 0.791 43774 

Sunday - 29  6.770 0.792 220581 5.458 0.782 44334 

 

 

It can be depicted from both the previous table and the previous section that Friday – 27th was the worst-case 

scenario out of all the selected days, were due to its double peak and demand pattern between the peaks especially, 

it was easier for a new high peak to form, which showed the lowest peak reduction potential at only 0.642% and 

its best results also were relatively lower than all other days at 3.839%. Its cost-saving also had the lowest range 

from 25,767 $ to 67,951 $, showing that a better peak period DR plan must be implemented to consider the double 

peaks present.   

 

On the other side, Sunday – 29th showed the highest peak demand reduction at 6.770% and a reduction in 

the cost of purchased energy, reaching 220,581 $ at best and 44,334 $ in the worst scenario. This day had the best 

results as mentioned since it had the highest peak demand; hence, the higher the peak demand is and the closer it 

is to the peak period, increasing the potential benefits that can be obtained.  Saturday the 28th and Sunday the 8th 

both had similar range savings at 196,245 $ and 154,505$ respectively, were due to the higher peak demand of 

Saturday, it had better savings.   
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7.5. Results for the month of December 2019 
 

The model was finally applied to the whole month of December - 2019 to show the general potential of 

applying the proposed DR model in the winter season for Jordan’s residential sector. Figures 49 – 51 show the 

peak reduction, load factor improvements, and cost savings achieved for every day in December, with the 

horizontal lines showing the weekends being Friday and Saturday. The “best” indicates that case scenario that had 

the very highest result such as (C7-300%) in Figure 48, while “Min” depicts the minimum achievable result out 

of all the case scenarios such as (C2-300%) from the same figure, while “Worst” indicates the lowest achievable 

results (C2-200%). In terms of peak reduction observed in Figure 49, the best results had a maximum potential of 

8.19% with an average of 6.04%, while the minimum results had a maximum of 5.46% and an average of 4.49%. 

It could also be noticed that there were only 4 days in the month where the model and peak period price policy 

showed low performance in terms of the minimum achievable results, which is due to the demand curve's unique 

behavior in those days. The load factor improvement results shown in Figure 50 had an average of 0.05 and 0.034 

for the best and minimum results, respectively, and followed the same trend as Figure 49. As for the cost-saving 

results depicted by Figure 51, the average for the best and minimum results were 154,890 $ and 64,263 $, 

respectively. The highest best cost-saving was observed at 265,411$ Saturday the 21st, where it can be observed 

that most Saturdays on the 7th, 14th, 21st, and 28th showed high-cost saving potential consistently, especially in 

relevance to Fridays that showed the lowest cost-saving potential. 

 

 

 
Figure 49 DR Peak Reduction for December 2019 
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Figure 50 DR Load factor improvement for December 2019 

 

 
Figure 51 DR Cost saving for December 2019 
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Chapter 8: Conclusion  
 

This research aimed at presenting a comprehensive demand response model for the Jordanian power sector, 

based on the maximization of the profit for the service provider, considering its interaction with the power 

generators and customers. To this aim, a peak period, Day-ahead DR based on the deep neural networks model, 

was introduced, and applied to the residential sector, which holds a large portion of the daily demand. The hourly 

Day-ahead demand prediction, which is one of the main inputs to the DR model, was achieved by training a deep 

neural network on 4-years of demand data showed perfect estimation with a MAPE error of 1.411% on the first 

test data set and 2.03% on the second one at the end of the four years training period. Besides, a precise PEMD 

estimation of Jordan’s residential sector was based on recent research on the short-term price elasticity of Jordan’s 

residential and the analysis of the different electrical appliances and daily operations. The results of the DR model 

applied for multiple case scenarios of the PEMD showed that peak reductions, load factor improvements, as well 

as high potential for significant cost saving could be achieved with the proposed DR model.  

 

Current Model Limitations:  

 

The proposed model at its current state faces the following limitations that should be taken into consideration 

for further development. First, due to the unavailability of a detailed electricity dispatching model for the 

Jordanian power sector, this part was simplified. Therefore, only the average prices and costs of the dispatched 

power plants were used in this study. By obtaining and including a more general and comprehensive dispatch 

model, more accurate modeling of the profit and saving calculation can be achieved, and a more precise 

optimization can be implemented. Second, in the presented model, the hourly residential demand of each 

distribution company was assumed to be a constant percentage of its share of the peak demand. Third, the hourly 

renewable energy power is considered given data to the model provided by each renewable power plant. Thus, a 

comprehensive prediction model should be combined with the current DR model to assess the impact of the 

climate conditions on balancing electricity supply and demand and predicting the demand response. In the 

presented model and due to the lack of full data related to weather conditions, these features were not fully 

integrated aside from the temperature. 
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Future Work:  

 

For future work, the DR model can be further investigated and extended to consider the following: 

 

1. Periods outside of the peak demand: While the current model focused on the periods of peak demand, 

utilizing the periods of off-peak and valleys to absorb demand from the peak periods through carefully 

selected pricing policies will be investigated. This will aid in increasing the load factor and decreasing 

the newly formed peaks surrounding the peak period, hence, leading to better cost savings and 

compensating consumers for the increase in prices in the peak periods.    

 

2. Prediction model improvement with weather variables: As was noticed in the analysis of the error rates 

in the day-ahead demand prediction model, the weather variables and peak periods had the highest errors, 

by not only influencing consumer behaviour to deviate from their expected values but also can affect the 

PV generation on the consumer side that is not seen by the grid operator, leading to an unexpected spike 

in demand. Thus, by taking into consideration the weather variables and finding a solution to this 

challenge, prediction errors can be further lowered.  

 

 

 

 

3. PV and Wind Day-ahead forecasting: While in the current model, the actual day-ahead hourly renewable 

energy values were used in the dispatch model, a prediction model can be constructed and optimized to 

handle this part by collecting more weather data related to PV and Wind generation.  

 

4. Dispatch model improvement: The current dispatch model can be further improved to include the actual 

powerplant economic dispatch equations of the Jordanian power grid, to achieve a more accurate cost 

analysis of energy purchased from powerplants.  

 

 

5. Investigating different DR models and policies: As previously discussed, there exist many types of DR 

models such as incentive paced, spot pricing, etc., where the benefits and impact of such models on 

achieving the DR objectives can be compared and tested.  

 

 

 

Future Policy Recommendations:  

 

The discussions and results of this work showed the impact of utilizing smart grid concepts such as DR 

systems and the utilization of machine learning algorithms to harness the available data more efficiently and 

produce high-performing prediction models. On this basis, the following future policy recommendations are 

proposed for the Jordanian government, MEMR, EMRC, NEPCO, and all other key parties in the power sector, 

to hasten the development of a smarter Jordanian power grid, especially in pushing the progress towards DR 

integration towards all consumption sectors and enabling R&D in the utilization of power grid data and advanced 

AI & ML algorithms to achieve energy savings, higher renewable penetration, and a reliable and optimized future 

power grid:  

 

1. This work highlighted the effectiveness of DR systems in Jordan and many others worldwide; we strongly 
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advocate an action-oriented approach early on to implementation, by mitigating residential DR barriers 

from consumer to supplier sides that halts engagement, wide market completion, and the implementation 

of innovative methods. The governments and related institutes should start by closing the distance and 

leading the first mile from static and standard tariffs towards a dynamic and type-based tariff system to 

capture the real potential and responsiveness, especially on the verge of country-wide installation of Smart 

meters.  

2. While industrial-based DR was implanted in Jordan successfully in a pilot project, this research has 

proven the benefit of moving the DR paradigm towards the residential sector. With the large portions of 

demand clustered in it, it proved to be an asset to dealing with the challenge of demand ramping in peak 

periods. Hence, directing assists in both the policy and research paradigm to facilitate and establish a 

smooth transition towards implementing a residential DR is essential early on.   

3. With residential end consumers being the core of the proposed DR response model, they should not be 

treated as a challenge but as an opportunity that should be well integrated into the energy efficiency eco-

system, not only with price-based incentives but as caring to reduce the energy consumption of their 

country and have a shared goal of decarbonization and having a greener energy system. Consumers should 

be made aware of DR impacts and DR enabling technology such as storage systems, automation 

technologies, and renewable energy that can all act in a supportive manner within as a cluster of integrated 

solutions.  

 

4. This work argued that not only great DR potential on weekdays can be delivered, but also on Saturdays, 

although Fridays had the furthest demand behaviour from the rest of the week and lowest potential. Higher 

emphasis should be made towards weekdays and Saturdays to further optimize the DR potential, while a 

more dynamic and customized DR for unique demand behaviours related to days such as Friday should 

be investigated separately to maximize the DR potential. The underlying demand behaviours of both 

normal and unique days should be well examined to enable smart and innovative designs for residential 

DR deployment.  

5. Also, as shown in detail, in the case of high consumer responsiveness to the price change, a high increase 

in prices should be strongly avoided. It can lead to increasing the off-peak loads significantly, leading to 

newly formed peaks in some cases. DR policies should also aim at moving consumers towards shifting 

their loads more evenly and outwardly outside of the peak period, rather than just shifting them close to 

the peak period through awareness campaigns, especially concerning highly impactful electrical 

appliances to DR potential.  

 

 

With that said, both the government and all key players in the power sector must take action to hasten the 

development of DR response systems for the different sectors of the Jordanian electricity sector and take into 

consideration policies to further increase the deployment of residential smart meters. Furthermore, research 

towards viable DR programs both price and incentive-based that attract the residential and different sectors in 

Jordan’s power sector should be implemented, as well as pushing awareness campaigns to the importance of DR 

systems and mature energy usage to achieving a smarter grid that can handle the increasing challenges faced by 

high demands and high penetration of renewable energies as well as achieve environmental goals. Also, the 

government should provide more incentive to enable researchers and related personals by implementing policies 

that can facilitate easier access to available data, expertise and connect said parties further to accelerate 

development and research in these promising areas.   
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