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Abstract

The geometrical formulae due to Tsuji (for 3D cubic metals) and
Ong (for 2D metals) for the weak-field Hall conductivity are reviewed.
Especially the Tsuji formula is discussed in Haldane’s perspective.

1 Introduction

In this note we review the geometrical formulae [1, 2] for the weak-field Hall
conductivity in metals.

In 2D the Ong [2] formula for the Hall conductivity is expressed only by
the mean free path. In 3D the Tsuji [1] formula is expressed not only by the
mean free path but also the curvature of the Fermi surface.

These formulae are geometrical interpretations of the Boltzmann conduc-
tivity and well understood in Haldane’s perspective [3].

2 Boltzmann conductivity

The weak-field DC Hall conductivity ¢®¥ per spin is given by
0 0 of
Ty 3B ® v~ v (=2t 1
7 =c Zk: (“ ok, ”akm) ( ag>’ (1)

using the solution of the linearized Boltzmann equation. Here the magnetic
field is chosen as B = (0,0, B) for simplicity. The mean free path vector I =
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(1%, 1¥,17) is given as | = 7v where v = (v”, vY, v*) is the velocity of the quasi-
particle and 7 is its renormalized transport life-time. Jf/0e is the derivative
of the Fermi distribution function f with respect to the quasi-particle energy
e. Although we have suppressed the argument of v, 7 and ¢, they are the
functions of the position k = (k% kY, k*) in k-space. The component of the
quasi-particle velocity v® (o = z,y, 2) is given as v* = Je/0k™ = &,.

Eq. (1) is valid when - and y- directions are equivalent. For general case
we should employ 6% = (0¥ — ¢¥*)/2. Consequently we obtain!

. 1 Mt MY\ [(v* of
Ty __ 3 T Y T 2
o7 = ge B Ek (" oY) (.7\ rl/_?/l Mfﬁ) (vy> T <——€> ) (2)

Ty TT

where o
M7} c
0 OkeOkP )

is the effective mass tensor.

It is remarkable that the derivatives of 7 cancel out? through the anti-
symmetrization (o*¥ — g¥*).

Eq. (2) is the general result for the Hall conductivity so that you have
only to estimate it numerically if you are not interested in its geometrical
interpretation.

3 Fermi surface contribution

In the case of Fermi degeneracy we can estimate —0f/0e by the delta func-

tion: of "
o (-5) = [ W

where v = 0¢/0k and the integral in the right-hand-side is over the Fermi
surface. Thus the Fermi surface contribution becomes

1 ds MY —MH v®\ T2
Y — Zed T Y vy zy _
= [ (G ) ) e o
Throughout this note we only consider the contribution from a single
sheet? of the Fermi surface.

1See [4] for 6*¥. See, for example, [5]-(2.56) for o®Y.

2Thus the expression for the Hall conductivity oy which contains the derivatives of 7,
for example [5]-(2.53), is a bad expression.

3In the case of multi-sheets we should sum the contributions from all the sheets [3].
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4 Haldane’s perspective

The above expressions are derived using the factor (v x 9/0k) - B. If we
switch the expression from (v x 9/0k) - B to its equivalence (B x v) - 0/0k,
we obtain the last equation in p.2-[3]:

ds 0
W=¢ | —I" (B Y 6
o=t [ ot (B m) - | v ©)
for the case of Fermi degeneracy. The unit normal vector is introduced as
n = v/|v| = (n*,nY,n*). The anti-symmetrization of Eq. (6) becomes Eq.

(5).

Haldane introduced the symmetric tensor v, as*

6 = e3ePry,, B (8)
In our restricted case® Eq. (5) is written as 6% = e3¢™*~,, B* with®
-1 -1 o\ 2
=g [asen (N ) (0 o
This 2 x 2 representation can be related to the 3 x 3 representation
(T YT BT

KTV VY gAY

KTZ Yz 7E

as discussed in the next section. See the Appendix C for the relation to the
usual 2 x 2 representation”. The 3 x 3 matrix can be diagonalized as

K1 0 0
0 K9 0 s (11)
0O 0 O
4We use Einstein’s convention:
e‘x’B“'ym,B” = Z Z e“ﬁuvu,,B”. (7)
noov

SWe measure the current in z-direction under the electric field in y-direction and the
magnetic field in z-direction.

SIn [3]
1 ds W rYY  —RYT vr
Yoz = B W (v%, v¥) T Y ]

since the integrand of y,g is given by €aus€s,0n"nY K712 and thus €,,5¢,,,n 0" K712 =
(N*n®KYY — n*nYKY® — nYn®k™ + nY¥nYk%)[2. This expression does not coincide with
our Eq. (9), since ours needs only (0v”/0kY)/|v|, for example, but Haldane’s needs
O(v®/|v|)/0kY. In other words 7., should be compared with x°? but not with n“nx%°.
"The usual discussions of the 2 x 2 representation are summarized in the Appendices

A and B.



as stated in the below Eq. (5) of [3]. The pair of the eigenvalues (k; and k)
is the basis of the geometrical interpretation: G = k1Ko and 2H = k1 + Ko
where G is the Gaussian curvature and H is the mean curvature.

Especially the trace 2H, which is independent of the choice of the local
coordinate, is the target in the next section.

5 Tsuji formula in 3D

Our master equation (9) should be viewed as

ds
zz — hzz 2, 12
e = [ amhert (12)
since h,, is determined solely by the derivative of ¢:
1
h,, = M (Ex€xEyy + EyEyErs — Ex€yEys — EyExEay) (13)

with e, = v* and e,5 = Mojﬁl This h.. reflects the Fermi surface geome-
try but 7 has no geometrical meaning. We should discuss the geometrical
property by the symmetric tensor +,,.

On the other hand, the trace 2H of the 3 x 3 representation (10) becomes®

1

2H = W - €€z (Eyy + €22) + EyEy €z + €uz) + €264 (€2z + Eyy)

—  eg(eyEyn + €2600) — Ey(€xEay + €:E2y) — €4(ExEny + aygyz)]. (14)

The mean curvature is given by this expression (14) for any shape of the
Fermi surface.

By comparing (13) and (14) we see that h., is a piece of H. By summing
three pieces we can construct H: H = (h,, + hyy + hy,)/|v|? where

1
Py = 270l (EyEy€rr + €26,Eyy — EyELELy — €264Ey2) (15)

and )
hy, = m (€.6.600 + €xE2Ers — €2E2E0r — Ex€2Ery) - (16)
h.. is obtained from the measurement: 6% = e3¢®?y,,B*. In the same

manner h,, and h,, are obtained from the measurements: 0¥* = e3e¥* @y, B®

8Here 2H = k™® + k%Y + k**. See Eq. (41) in the Appendix C for k**. k*® and KYY are
obtained in the same way.



and 6% = e3e*"V,, BY, respectively. By summing three experimental results
with different configurations we obtain

dsS

with 12 = [l|? = |v|*72%

In the case of cubic symmetry we obtain the Tsuji formula®

dS H
Yoz = Yoz = Vyy = / (27T)3 ?F (18)

This form (18) is given in Eq. (4) of [3].

6 Ong formula in 2D

Although Haldane [3] discusses the relation between 2D and 3D formulae,
we shall discuss the 2D case as a separate issue.

For simplicity, we put B = (0,0, B) as in the previous section and set the
2D system in xy-plane. The 2D version of (6), Eq. (2) in [2], is given as

o = ¢ / (;’:;2# {(B X n)- %L 1Y, (19)

where dk; is the length along the Fermi line. Since B x n = Bt and t -
(0/0k) = 0/0ky, (B x n) - (0/0k) = BJ/0k; where t is the unit tangent
vector along the Fermi line, Eq. (19) is written as

oY = ay / =d, (20)

where dl¥ = (01Y/0k;)dk;. After the anti-symmetrization we obtain the Ong

formula
e3B 1 e’ B 1
sxy _ gy oy — -
5 = / ! [ — e 5 / : I dlL. (21)

This form (21) is given in Eq. (3) of [2]. Moreover, Ong [2] discussed the
“Stokes” area in l-space.

9The derivation of the Tsuji formula is shown in the Appendix A of [5].
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A Curvature in differential forms

In this appendix we review the minimum fundamentals'® of a smooth surface
Y2 in 3D Euclidean space.

Let us choose a point  on the surface ¥ and consider the vector n
normal to X at &. Then we move to another point &’ on X and consider the
normal vector n’ there. Both n and n’ are unit vectors. We assume that the
movement is infinitesimally small so that both de =’ —x and dn =n'—n
are in the tangent plane!! at the point x.

The vectors in the tangent plane are expanded as dx = 01e; + 02e5 and
dn = wie; +wses where e and e, are the basis vectors of the tangent plane.
Here o1, 09, wy and wy are 1-forms. The 2-form o049 represents the element
of area of ¥. The 2-form wjwsy represents the element of area of the unit
sphere. The Gaussian curvature K is introduced as the magnification factor
between two areas: wiwy = Koq09.

Two sets of 1-forms are related by a symmetric matrix (¢ = b) as

(@)=Ca) () o

The determinant of this matrix is the Gaussian curvature: K = ad —bc. The
trace is related to the mean curvature H: 2H = a + d. If this 2 x 2 matrix

is diagonalized as
K1 0
( 0 Iig) ’ (23)

K = k1Ko and 2H = k1 + Kko. Here the eigenvalues, k1 and ko, are principal
curvatures.

B Components of 2 X 2 representation

In this appendix we calculate the components of the 2 x 2 matrix'? in the
Appendix A explicitly.

We give the point on the surface ¥ as = (2!, 2%, u) with u = u(z!, z?).
Accordingly dz = (dz!, dz?, du) where du = p;daz! + pyda? with p; = Ou/0x’
(¢ = 1,2). Introducing the vectors t; = (1,0,p;) and t5 = (0,1, po) the small
tangent vector is written as dz = t,da! + todz?. The unit normal'® vector
is given by n = w/|w| with w = (—py, —p2, 1).

10See, for example, §4.5 of [6].

' The normalization n - n = 1 leads to dn - n = 0.
12See, for example, §8.2 of [6].

13Tt is apparent that w -t; = 0 and w - t5 = 0.



Let us consider the map A: dz — dn and introduce the 2 x 2 represen-
tation by

(dn-t;) = Zaij(dm -t;), (24)

where the inner product is defined as

t
x-t=(z,y,2)- (L‘,u,v)t =(z,y,2)- [ u ]| =t +yu+ zv. (25)
v
Since dn - t; = —(1/|wl) Y7, ri;d2’/ and da - t; = 3, (0 + pjpr)da” with
i =0%u/02'0x7 | a;; satisfies

2

Z Qjj (5jk; +pjpk) = —mﬁk- (26)

J=1

In terms of Monge’s notation (p = du/dx, q = Ou/dy, r = 0*u/dz?, s =
0*u/0zdy, t=0?u/0y* with x'=x and z?=y) Eq. (26) is written as

i (1+p* pg L (r s
A = —— . 27
( Pq 1+¢? lw| \s 1 (27)
Thus
. (pqs —(1+¢)r pgr—(1 +p2)8) _ (25)
jw* \pat — (1+¢*)s pgs — (1 +p*)t
The trace is readily obtained as
A 1
2H = trace <A> = e [2pqs —(1+pHt—(1+ q2)r]. (29)
After some calculations the determinant is obtained as
~ 1 9
szet(A):W[Tt—s]. (30)

The components a;; are also'* obtained by the derivative of the unit
normal vector n = (n*,n¥,n*) where n = w/w with w = (—p,—¢, 1) and
w* = p*+¢*+ 1. Here weput p, =71, ¢, =t and s = p, = ¢, for the
convenience of the calculation. The results'® are

x
ar = aanx = —ipm + %(ppx +4q:) = % pgs — (1+ q2)7“]> (31)
141f we set the view point at (0,0, 00), the identification, aj; = On®/dz, az; = On®/dy,
a12 = OnY/0z and age = OnY/dy, is naturally understood.
I5Here we should take care that dn = dzA.




on® 1 P 1 9
an =g = Pt 3 epy +aay) = -5 [pqt —(1+g¢ )8}7 (32)
onY 1 q 1 9
=S = gt L opetag) = 5 [per - (14 p7)s], (33
a1z = o —0e+ 5 (PP +40) = [pqr (L+p%)s (33)
onY 1 q 1 9
Q9o = 8_y = _qu + E(ppy +qqy) = e [pqs —(I+p )t] (34)

C 3 x 3 representation

Here we move from x-space to k-space. In the Appendix B we have assumed
that the z-component is given by the function u(z,y) explicitly. In the fol-
lowing we assume that the point k = (k%, k¥, k*) on the Fermi surface is given
by e(k) = 0 implicitly.

The 2 x 2 matrix introduced in the Appendix B is written as

KIT ey
(5 ). (3)
which is a part of the 3 x 3 matrix

Trr

K kY K
K™ kY R (36)
KTZ RYE gRE
where e
ab _ On

with a,b =z,v, 2.
If the 2 x 2 matrix is diagonalized as

(5 0)

then the 3 x 3 matrix is diagonalized as

K1 0 O
0 K9 0 s (39)
0 0 0

since both dn and dx are in the tangent plane so that the normal vector be-
comes the eigenvector of the 3 x 3 matrix with zero eigenvalue. Consequently
the trace of the 3 x 3 matrix is equal to the trace of 2 x 2 matrix.



The components k% are expressed in terms of the derivative of the quasi-
particle energy . For example,
8712 8 £, Ezz €z

= :___5x€mz+5€z+825227 40
o " E T2 o] 0P vy ) (40)

K,/ZZ —

where |v|* = €2 + ) + ¢ In Eq. (40) the term e.e.¢6,., which is not
expected for the off-diagonal conductivity, disappers by the subtraction so
that we obtain

1
R

zZz

K (€2€x + €y€y)Ery — €4(Ex€nz + eyayz)] . (41)
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