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Abstract

We propose Visualized EC/IEC as an evolutionary
computation (EC) and interactive EC (IEC) with vi-
sualizing individuals in a multidimensional searching
space in a 2-D space. This visualization helps us en-
vision the landscape of an n-D searching space, so
that it is easier for us to join an EC search by indi-
cating the possible global optimum estimated in the
2-D mapped space. We first compare four mapping
methods from the points of view of computational
time, convergence speed, and visual easiness to grasp
whole EC landscape with 5 benchmark functions and
28 subjects. Then, we choose self-organizing maps
for the projection of individuals onto a 2-D space and
experimentally evaluate the effect of visualization us-
ing a benchmark function. The experimental result
shows that the convergence speed of GA with human
search on the visualized space is at least five times
faster than a conventional GA.

keywords: interactive evolutionary computation,
multidimensional data visualization, human inter-
vention, accelerating EC convergence, human fatigue,
self-organizing maps

1 Introduction

Interactive evolutionary computation (IEC) has been
used for several application tasks, for example,
graphic arts and animation, 3-D CG lighting, mu-
sic, editorial design, industrial design, facial image
generation, speech processing and synthesis, hearing
aid fitting, virtual reality, media database retrieval,
data mining, image processing, control and robotics,

food industry, geophysics, education, entertainment,
social system [16, 17, 21]. In spite of the increasing
interest, this technology still has a common problem
with these applications: the fatigue of IEC users. To
make this IEC technology practical, we must improve
the user interface.

In a conventional IEC, the roles of EC and a human
user are completely separated; the EC performs the
searches while the human user evaluates the result.
The user plays a passive role in the search which con-
tributes to the slow convergence and human fatigue.

We have proposed methods that allows an IEC user
to directly participate in EC searches to ease psycho-
logical and physical fatigue [18, 20, 5, 3]. The active
user intervention leads to a faster convergence of the
EC search, and the faster convergence results in less
user fatigue. On-line knowledge embedding is one
based on this idea. This method provides a mecha-
nism to accept the searching idea, hints, or intentions
of an IEC user during the IEC operation [4, 18]. For
example, when a user feels that a certain part image
of a montage face is acceptable, we fix the partial
face image in subsequent searches, which limits the
searching space and, therefore, converges faster. The
effect of this method was shown through subjective
tests [18]. Directly editing the tree of genetic pro-
gramming for CG is another method of active user
intervention to EC search [22].

Our proposed Visualized IEC and/or Visualized
EC is another method based on the same idea of ac-
tive user intervention. The Visualized EC/IEC al-
lows an EC or IEC user to actively participate in EC
searches by providing the user the distribution image
of past individuals mapped from an n-D searching



space to a 2-D space [20, 5, 3].

As the user intervention relatively takes longer
time in comparison with EC operations, the Visu-
alized EC is applicable only when fitness calculation
takes longer time than the user intervention. There
are many such EC tasks, for example, it takes a
half to two hours for some of geophysical simulations
to calculate all fitness values in each EC generation
[2, 3]. On the other hand, the Visualized IEC is al-
ways applicable because the human evaluation of in-
dividuals takes long time. So that, we mainly focus
on the Visualized IEC rather than Visualized EC in
the following sections except experimental evaluation
in section 4.

We first propose the Visualized IEC in section 2,
evaluate four mapping methods for visualization with
5 benchmark function and 28 subjects in section 3,
and evaluate its convergence performance using a
benchmark function in section 4. Although the main
objective of this paper is to propose the Visualized
EC/IEC and evaluate the performance of its visu-
alization, we show some its applications in section
5 to show its applicable potential. As genetic algo-
rithm (GA) is used in our experiments as one of EC
techniques, we sometimes use the term of Visualized
GA/IGA in this paper.

2 Visualized IEC

2.1 Why Visualized IEC ?

Visualized TEC is a method that combines the dif-
ferent capabilities of EC and humans to search for a
global optimum. The EC directly and systematically
searches the original n-D space using EC operators,
which is much better than the human searching capa-
bility. However, humans have an excellent capacity
to grasp an entire distribution of individuals in the
2-D space at a macroscopic level that cannot be in-
terpreted by the EC. This is why the Visualized IEC
combines the algorithmic EC search in an n-D space
and the human global search in a mapped 2-D space.

Since a human IEC user and the EC cooperate
with each other and optimize their own searching
advantages in the Visualized IEC, we can expect a

faster convergence. This searching cooperation fea-
ture is different from a conventional IEC or pre-
viously proposed visualization-based searches. The
roles of the EC and the human are separated in con-
ventional IEC; the EC performs the search and an
IEC user evaluates the searched individuals, indepen-
dently. For example, the visualization-based searches
used in a 3-D CG design support system [10] and a vi-
olin sound estimator [9] request human users to both
search for the global optimum on the mapped 2-D
searching space without the help of optimization al-
gorithms and evaluate the searched individuals.

2.2 Multidimensional
tion

Data Projec-

Since it is difficult for humans to grasp the geomet-
ric relationship among individuals that have multidi-
mensional parameters, it is difficult to directly obtain
information from an n-D searching space. However, it
becomes easier for humans to grasp the approximate
relationships among individuals by mapping the indi-
viduals from the n-D searching space to a 2-D space.
Although the 2-D space does not keep all the informa-
tion about the original n-D space, humans can grasp
the state of the whole of the searching space when the
topological relationships among individuals in the 2-
D space are about the same as those in the original
n-D space, which helps humans to cooperate with the
EC on search and indicate the direction to the global
optimum. The indication of the search is based on the
geometric relationships kept which shows that indi-
viduals with high fitness values tend to concentrate
on the same points in the 2-D space (see Figure 1.)

There are several mapping methods for 2-D visu-
alization, for example, the principle component anal-
ysis, Sammon’s non-linear mapping (NLM) [15], self-
organizing maps (SOM) [6], VISOR [7], TOPAS [g],
and the method using genetic programming [23]. Any
visualization methods are usable in the Visualized
IEC, but some methods are more suitable for the Vi-
sualized IEC than others. We evaluate the differences
in section 3.



Figure 1: Projection image from an n-D space to a
2-D space while keeping the topological relationships
among data samples.

2.3 Construction of a Visualized IEC
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Figure 2: Diagrams of IEC (upper) and Visualized
IEC (lower).

In the IEC, EC optimizes the parameters of an ap-
plication task, and the task system outputs sound,
speech, graphics, or other outputs which are han-
dled by the human senses. The human IEC user
observes the output, evaluates them based on his or
her sense of value, and returns his or her subjective
fitness value to the EC (see Figure 2 upper.)

Visualized IEC systems display not only sound or
graphics to the user, but also the distribution image
of past EC searched individuals by mapping them
from an n-D searching space to a 2-D space (see Fig-
ure 2 lower.) Fitness values of individuals in the 2-D
space are displayed with gray level, different colors,
the depth of color, size, or numerical characters to
view, for example, to visualize the landscape shape
of a searching space. An IEC user selects points in
the 2-D space that look to have high fitness values
from the fitness value distribution point of view, and
the individual with the lowest fitness value in the EC
population is replaced with the selected best point.
Since neighboring individuals in an n-D space be-
comes neighbors in a 2-D space too, the topological
relation of the n-D space is kept in the mapped 2-D
space and the additional selected individual in the 2-
D space can be expected to be located near the global
optimum in the n-D space. The EC mates and creates
offspring using the parent population that includes
the newly added individual. See these operation flow
in Figure 3.

Since the possibility that an excellent individual is
added to the EC population in each generation by the
IEC user is high, the acceleration of EC convergence

is expected.
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Figure 3: Flow of Visualized EC/IEC. Process in
bold boxes are for visualization. Fitness evaluation
is conducted by a fitness function or human subjec-
tive evaluation in Visualized EC and Visualized IEC,
respectively.



3 Mapping Methods for Visu-
alized EC/IEC

We evaluate four mapping methods from the view
point of the practical use of the Visualized EC/IEC.
The main technique of the Visualized EC/IEC is a
mapping method from n-D space to 2-D space. We
should choose the methods that the global optimum
must be easily estimated visually on the mapped 2-D
space and whose computational cost must be in prac-
tical level. Although there are several mathematical
methods that project data from n-D space to 2-D
space, suitability for the Visualized EC/IEC may be
different.

We compare and evaluate the mapping perfor-
mance and computational cost of NLM [15], VISOR
[7], SOM [6], and TOPAS [8] with five benchmark
functions in Table 1 in this section. The mapping
method recommeneded in this section will be used in

conducted with Pentium II whose clock is 400 MHz
under Linux OS.

Table 2: CPU time (in seconds) of three mapping
methods for five test functions.

SOM | NLM | VISOR
DeJong F1 3 1376 1
DeJong F3 4 1342 1
DeJong F5 3 6119 1
Schaffer F1 4 1328 1
Schaffer F2 4 2708 1

Table 3: CPU time (in seconds) of TOPAS for Schaf-
fer F2.

section 4, where we evaluate the effect of the visual- | # of data | CPU time || # of data | CPU time
ization. 100 139 220 2784
120 237 240 3941
Table 1: Five test functions. 128 g?; ;gg g;gg
180 1279 300 10870
Name of Expression 200 1921
function
DeJong F1 Z?:1 z;?
5
Bzzgi llj:g 5 Zzzgzl Lz + ?6'0 = The TOPAS did not stand comparison with these
500 j=1 j+2f:1 (mi—ai;)® fthree methods; it is too slow. We gradually increased
(Sin\/Z% 22)2_0.5 the number of data, calculated the CPU time with
Schaffer F1 0.5+ . $chaffer’s second function, and obtained the data in
] 1A0+0A001(Z:5:1 w;2)? Table 3. The approximation function for these CPU
Schaffer F2 | (3°,, #:*)"*[sin®(50(3 5, #:*)™ ) + L.0] fine data was ¢ = 1076  n3985L  [tg complexity
seems O(n?), which is supported by the fact that
the TOPAS program includes quadruple loops. This
complexity means that the TOPAS needs 452 days
3.1 Comparison by Computational t© map 2,500 data.

Cost

We compare the CPU time of four mapping methods
that is an average time of each generation to map
2,500 data from n-D space to 2-D space [14]. Ta-
ble 2 shows the CPU time in seconds for the five
benchmark functions in Table 1. The simulation is

These experimental results regarding computa-
tional cost conclude that (1) the NLM and the
TOPAS are far from practical use for Visualized EC
and Visualized IEC, and (2) the VISOR is the best,
but the SOM is also within permissible range of prac-
tical use. We adopt only the VISOR and SOM in the
following two experiments.



3.2 Comparison by Visual Inspection

Mapping result to a 2-D space must be easy for a
human user to visually estimate the global optimum.
We evaluate the visual impression of the mapped im-
ages of the SOM and VISOR using human subjects
because NLM and TOPAS are far from practical use
shown in section 3.1. We request 28 students in twen-
ties to operate the Visualized GA with SOM and
the Visualized GA with VISOR for the 5 benchmark
functions in Table 1 and report which Visualized GA
is easier to grasp whole landscape of GA search space
and easier to visually find better individuals. Their
comparisons are statistically tested using a sign test.
See the result in Table 4.

Table 4: Sign test results of 28 subjects on visual
inspection of two Visualized GA. SOM and VISOR
mean that the number of the case that Visualized GA
with SOM or VISOR were easier to guess where are
better points on the 2-D map than another; SAME
means that visual inspection of two Visualized GA
were same; ** means significance with (p < 0.01).

benchmark | SOM | VISOR | SAME | sign
function test
DeJong F1 27 0 1| **
DeJong F3 23 2 3| **
DeJong F5 22 1 5| **
Schaffer F'1 25 2 1| **
Schaffer F2 25 0 3| Kk*

Figure 4 is example visualizations of GA landscape
at the fifth generation when the Visualized GA with
SOM and the Visualized GA with VISOR are applied
to Schaffer F2. The mapping relation between n-D
and 2-D spaces are previously calculated using 2,500
data which corresponds to resolution of the map. Fit-
ness value at each searching point is expressed by the
depth of color in reality.

Experimental result has shown than the visualiza-
tion by SOM seems to have more visual information
of GA landscape than that by VISOR. Searching
points are widely spread by SOM in the Figure 4,
while those by VISOR locally gather in some spots.
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Figure 4: Example visualizations of GA landscape:
the Visualized GA with SOM (left) and the Visual-
ized GA with VISOR (right).

This implies that the VISOR visually provides less in-
formation of the GA landscape than the SOM does.
In fact, many subjects reported that the visualization
by SOM was easier to guess where are better points

on the 2-D map than that by VISOR.

3.3 Comparison of Convergence of
two Visualized GAs

The convergence of the Visualized GA with SOM and
the Visualized GA with VISOR is compared using
five benchmark functions in Table 1. Same GA con-
ditions are used for all experiments; GA coding type
is 32 bits real coding, crossover rate is 0.9, mutation
rate is 0.02, and population size is 20. Mapping re-
lationships from n-D to 2-D using SOM and VISOR
were previously calculated with 10,000 data for visu-
alization GAs. The average convergence curves are
calculated using the data of 28 subjects.

Figure 5 shows average curves of 28 subjects for
two Visualized GAs. Subjective tests with Visualized
GAs were conducted till the fifth generations because
the convergence of the Visualized GAs became clear
at the fifth generation and it is important to keep
subjects with less fatigue for reliable subjective tests.

The convergence of two Visualized GA at the fifth
generation are evaluated using a sign test. Table 5
shows the test results. The reason why Figure 5(c)
seems different from the result in Table 5 is that the



Fitness Value
Fitness Value

Generation

(a) (b)

Fitness Value

Generation Generation

(© (d)

- — = Visualized GA with VISOR
— Visualized GA with SOM

Fitness Value

Generation
(e)

Figure 5: Average convergence curves of two Visual-
ized GAs for (a) DeJong’s F1, (b) DeJong’s F3, (c)
DeJong’s F5, (d) Schaffer’s F1, and (e) Schaffer’s F2.

Table 5: Sign test results of 28 subjects on conver-
gence of two Visualized GA. SOM and VISOR mean
that the number of the case that Visualized GA with
SOM or VISOR were faster than another; SAME
means that convergence of two Visualized GA were
same; ** and * means significance with (p < 0.01)
and (p < 0.05)

benchmark | SOM | VISOR | SAME | sign
function test
DeJong F1 23 5 0] **
DeJong F3 3 7 18
DeJong F5 20 8 0
Schaffer F1 20 8 0
Schaffer F2 8 20 0

average curves are deeply influenced by extremely
better/poor convergence curve among 28 subjects,
while sign test does not consider the amount of dif-
ference between two curves. The SAME for DeJong
F3 means that 18 subjects could not converge and
within first five generations.

These results imply that the superiority of two Vi-
sualized GA depends on tasks.

3.4 Discussion

The summary of three experimental results in this
section are: (1) the VISOR needs less calculation
time than the SOM, (2) the visualization by SOM
is easier to visually grasp whole GA landscape than
that by VISOR, and (3) superiority of two mapping
methods in convergence depends on tasks.

Visualized EC is applicable only when fitness cal-
culation takes longer time than human interaction
on the visualized 2-D map, while Visualized IEC is
always applicable as mentioned before. From this
applicable point of view, we decide to attach impor-
tance to the human aspect of two mapping methods,
i.e. we consider that SOM is more important to re-
duce the fatigue of Visualized IEC users. We use
only SOM for the visualization in the subjective ex-
periment in the next section. Note that the reason
why we adopt Visualized GA in the next section is
for objective evaluation of the Visualized IGA, and it
does not contradict our attaching importance to the
SOM for Visualized TEC.

4 Evaluation of Convergence

4.1 Experimental System

We evaluate how human intervention accelerates the
convergence of the EC search. The final evaluation
should be conducted using the Visualized IEC and
subjective tests. However, since the IEC deals with
subjective fitness values that depend on the appli-
cation task and the subject’s perceived value of the
task, we preliminarily evaluate the effect of the hu-
man intervention without subjective evaluation to
the given tasks in this section.
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Figure 6: Experimental system of the Visualized GA.
GA determines the coordinate of the minimum value
of the Schaffer’s second function, and the difference
of the function output and the minimum value is fed-
back into the GA as a fitness value. The human op-
erator visually selects a possible global optimum in
the mapped 2-D space and sends it to the GA as a
new possible parent. Self-organizing map is used to
map individuals from an n-D space to a 2-D space.

We do not compare the convergence performance
of the Visualized IEC and IEC but that of the Visual-
ized EC and EC in reality; since we use GA as one of
the EC technologies in this section, the actual com-
parison is the Visualized GA versus a normal GA.
This experimental evaluation needs no human inter-
active evaluation of the given task but only the hu-
man selection of better individuals in the 2-D space.

Figure 6 shows an experimental system. Since this
system has a fitness function, the role of the human
user is only to select better candidates in the 2-D
visualized space, while a Visualized IEC user plays
both roles of a fitness function and a selector of the
better candidates (compare Figures 2 and 6.)

Two modified Schaffer’s second functions illus-
trated in Figure 7 in 3-D and 5-D are used as the
experimental tasks of the Visualized GA and GA.
Flat space at the bottom in Figure 7 is a searching
space, and the shape of the function is a landscape
of the searching space. The searching points on the
landscape are mapped onto 2-D space, and their fit-
ness values are displayed. The task is to determine
the coordinate that results in the minimum value of
the Schaffer’s function, i.e. 0. Distance, |function
(GA individual) — 0|, is fed-back into the GA as a

fitness value.
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Figure 7: Modified Schaffer’s second function given

by (X, xf)% * {Sin2(50 w (Y a2) ™ i + 1}, where
—100 < z; <100 and n = 3 and 5.

Figure 8: The example image of the mapped 2-D
space of 40 individuals (= 20 individuals x 2 genera-
tions) in the second generation and some individuals
created by a user. Original interface distinguishes
individuals with color.

Figure 8 is the interface design of the mapped 2-
D space used in our experiment. The fitness values
of individuals, including those from past generations,
are displayed with different depths of color. A hu-
man user finds an area where individuals with higher
fitness values gather, selects a maximum of three indi-
viduals that seem to have the highest fitness values,
and replaces one of the 20 individuals with the se-



lected one. Besides the classification by the five levels
of depth of blue color, our experimental system can
display the exact fitness value of the selected point
so it is easier for users to compare individuals. The
best individual in each generation is displayed with
an orange color, and if the fitness value of a new in-
dividual created by the user is better than these best
individuals, the new one is displayed in pink.

Table 6: Experimental conditions of GA and SOM.

(a) GA parameters
population size 20

crossover rate 0.9
mutation rate 1/80
# of generations 10
GA coding binary coding
bit length 16

(b) SOM parameters

# of learning 1,000
neighborhood function | step function
shape of neighborhood hexagon

neighborhood radius )
learning rate factor 0.4
# of units 200x200

We adopt SOM to map individuals from an n-D
space to a 2-D space as seen in Figure 1 from the
discussion in section 3. Figure 8 is the example of
mapped distribution of individuals. The population
size is 20. As the amount of data increases, we re-
train the SOM in every generation, so that the num-
ber of displayed individuals in the 2-D space increases
20 by 20 in each generation. The possible mapped
points in the 2-D space are 200 x 200.

SOM learns all mapping points on a 2-D space from
input data in an n-D space before it is used in the Vi-
sualized EC/IEC. Therefore, it is quite easy to find
the point in the n-D space that corresponds to the
user’s choice on the 2-D space during searching pro-
cess of the Visualized EC/IEC. Since the SOM does
not keep the absolute distance relationship in the n-
D space on the 2-D space, we cannot estimate the

distances among points in the n-D space from those
in the 2-D space. However, the SOM keeps topologi-
cal relationship of these distances, and we can expect
that the similar evaluation would be given to their
neighbor points.

The experimental conditions of GA and SOM are
showed in Table 6. The evaluating subjects in our
experiment are five graduate and undergraduate stu-
dents.

4.2 Experimental Results

Figure 9 shows the experimental results for the tasks
whose complexity is different, where the dimensional
number, n, is 3 and 5. These graphs clearly show
that the visualized GA converges much faster than a
normal GA; the convergence speed of the Visualized
GA with a population size of 20 is similar to that of
normal GA with a population size of 100 and 1,000.
This means we can expect that the Visualized GA
to converge five time faster or more than the normal

GA.

4.3 Discussion

Although the convergence characteristics of our pro-
posed method depends on the subjects, the average
convergence characteristics of the five subjects was
much faster than that of normal GA. Due to human
fatigue, the number of EC generations and the num-
ber of individuals displayed to an IEC user was usu-
ally limited to 20 generations and 20 individuals at
most. Therefore, the experimental result that the
proposed method with a few individuals converges
faster than the normal GA with many individuals
implies that the Visualized IEC is expected to be a
powerful tool for difficult IEC tasks.

Generally, the higher the dimensional number of a
searching space, the more slowly the GA converges.
In our experimental evaluation, the convergence per-
formances of some experimental subjects did not de-
pend on the dimensional number, 3 and 5. There was
even a case that convergence in a 5-D space was bet-
ter than that in 3-D space. We can expect that the
convergence of the Visualized TEC is tolerant about
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Figure 9: Convergence characteristics of normal GAs
with population sizes of 20, 100, and 1,000 and the
Visualized GA with a population size of 20 for a mod-
ified Schaffer’s function of 3-D and 5-D, are shown in
the upper and lower graphs, respectively. Solid lines
represent the five experimental subjects for the Visu-
alized GA.

the complexity of tasks and that the Visualized IEC
becomes much more powerful for complex tasks.

In early generations, when the individuals are
sparsely displayed in the 2-D space, it is often diffi-
cult to observe the landscape of the searching space,
which makes it difficult for human subjects to esti-
mate the location of the global optimum in the 2-D
space. For such a case, they choose points near the
best individuals in the 2-D space. As these points are
expected to have higher fitness values as well as the
best individuals, the sparse distribution in the early
generation may not been a serious problem.

Even if IEC users select and create a worst indi-
vidual, it mean that only one bad individual is added
to many in a population, and it is weeded out by the
natural selection in the next generation, which is not
a serious problem.

In our experiment, we found that the training time
of SOM to map 40,000 points (= 200%x200, see Ta-
ble 6 (b)) in every generation would be too long for a
smooth human interaction with our computer used in
section 3. The easiest solution is to reduce the num-
ber of SOM units. After the experiment described
in this section, we confirmed that the SOM calcu-
lation time could be decreased within an allowable
range without reducing its performance by reducing
the number of SOM units.

5 Applications of Visualized

IEC

The experimental evaluation in the previous section
has shown the effectiveness of visualization for GA
search, and we can expect the Visualized IEC is a
practical solution for several applications. In this
section, we show two examples of Visualized IEC sys-
tems.

5.1 Application to Speech Processing

Figure 10 is a user interface of the Visualized IEC ap-
plied to a speech processing system. The IEC speech
processing system is a system that improves the qual-
ity of speech sound [24]. The frequency character-
istics of a filter is specified by 6 parameters of the



] =T I  — -
play 1 play 2 play 3 play 4
good bad good bad good bad good : bad
play 5 play 6 | play 7 play 8
I_r -
good bad good bad good bad good bad 2 ¢
play 9 play 10 play 11 play 12 'q.
»
good bad good bad good bad good bad e
play 13 play 14 play 15 play 16 “
——— 7 . . Lt L
good bad good bad good bad good - bad L
play 17 play 18 | play 19 play 20 play new
good bad good bad good bad good bad good bad

Figure 10: User interface of the Visualized IEC for
speech processing.

amplification levels at 125Hz, 250Hz, 500Hz, 1kHz,
2kHz, and 4kHz. These parameters are modified to
improve the speech quality based on user’s hearing
and GA search. The processed speech sounds are pre-
sented when play buttons on the IEC user interface
are pressed. An IEC user evaluates each processed
sound, and the GA searches better filter parameters
based on user’s subjective evaluation as fitness val-
ues.

Besides the user interface of the IEC consisting of
play buttons and rating buttons for 20 individuals,
the interface of the Visualized IEC has a window for
data visualization located on the right side of Fig-
ure 10. Six dimensional filter parameter vectors are
mapped by SOM on the 2-D window and displayed
at once. Darker colors are assigned to higher rat-
ing buttons, and the same depth of color on the 2-D
windows indicates a similar human evaluation of fil-
ters in past generations. A Visualized IEC user clicks
points where he or she guesses that there are better
parameter vectors of filters from the distribution of
rated past ones on the 2-D space. Then, a new filter
is created from the location information of the clicked
point, and the speech sound processed by the filter
is displayed to the user. The user evaluates the fil-
ter in the same way. The user can repeat to create
a better filter until he or she is satisfied, and final
created best filter is used as a new parent when the

next generation button at the bottom of the figure is
pushed.

Figure 10 shows the distribution of the 5th gen-
eration of the Visualized IEC for speech processing,
and 20 individuals x 5 generations and some individ-
uals newly created by a user are displayed on the 2-D
windows. Observing the distribution of fitness values
in this figure, it looks like many better individuals
are located within the same narrow area on the 2-D
window. It seems helpful for the user to quickly find
the filter that minimally distorted the speech sound
by searching near that place.

& scompan o @

Figure 11: Graphical user interface of a PDA version
of an IEC-based hearing aid fitting.

Another TEC application to speech processing is
an IEC-based hearing aid fitting, IEC' Fitting [11, 12,
13, 19]. As one of the features of the IEC Fitting is
fitting place-free, portability is important for the IEC
Fitting to let hearing aid users and audiologists fit
their hearing aids in their daily sound environment.

A PDA (Personal Digital Assistant) version of the
IEC Fitting was developed for this purpose. To put
all user interface on to the small display of a PDA,
the Visualized IEC was use (see Figure 11).
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Figure 12: Distribution of room lighting parameters
mapped on 2-D space and corresponding CG lighting
expression for night scenes.

5.2 Application to Room Lighting De-
sign

We are expanding our previous work of a 3-D CG
lighting design support system [1] to a room lighting
design. The task of 3-D CG lighting is to determine
the best positions and brightness of multiple lights
and create a lighting expression by matching the ef-
fect to the given motif or personal preference.

Figure 12 is the distribution of 10 room lighting pa-
rameter vectors mapped from a 7-D parameter space
to a 2-D space. Lighting CG scenes created by 10
lighting parameter vectors are posted in the same fig-
ure like as Marks et al.’s Design Galleries [10] for the
readers’ convenience. Since similar CG scenes tend
to gather in the similar location in the 2-D space, it
expected that the users could easily and quickly find
an ideal lighting for them.

We are going to evaluate the convergence charac-
teristics of the Visualized IEC approach by compar-
ing it with a purely manual searching approach like
the Design Galleries [10] or an acoustic data naviga-
tor [9].
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6 Conclusion

We proposed the Visualized IEC that provides the
visual landscape of searching space to IEC users and
lets them actively participate in EC searching with
less fatigue, which results in a faster EC convergence.

We first compare four mapping methods for the vi-
sualization and choose SOM. Then, we evaluated the
convergence performance of the Visualized GA with
SOM and normal GA. The experimental evaluation
implied that the Visualized IEC converges five times
faster or more than a normal IEC, though this quan-
titative performance value depends on GA condition,
subjects, and tasks.

We then showed two example applications of the
Visualized IEC, observed the distribution of data in
the mapped 2-D space, and found that the individu-
als whose phenotypes are similar gather and become
neighbors in the mapped 2-D space. We are going
to continue further evaluation whether a good indi-
vidual, i.e. a solution of these concrete application
tasks, can be found quickly through subjective tests.
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